ebook img

Simulation and Experiments of Material-Oriented Ultra-Precision Machining PDF

310 Pages·2019·21.072 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Simulation and Experiments of Material-Oriented Ultra-Precision Machining

Springer Tracts in Mechanical Engineering Junjie Zhang Bing Guo Jianguo Zhang Editors Simulation and Experiments of Material-Oriented Ultra-Precision Machining Springer Tracts in Mechanical Engineering Board of editors Seung-Bok Choi, College of Engineering, Inha University, Incheon, South Korea Haibin Duan, Beijing University of Aeronautics and Astronautics, Beijing, P.R. China Yili Fu, Harbin Institute of Technology, Harbin, P.R. China Carlos Guardiola, CMT-Motores Termicos, Universitat Politècnica de València, València, Spain Jian-Qiao Sun, University of California, Merced, CA, USA Young W. Kwon, Naval Postgraduate School, Monterey, CA, USA Springer Tracts in Mechanical Engineering (STME) publishes the latest develop- ments in Mechanical Engineering - quickly, informally and with high quality. The intentistocoverallthemainbranchesofmechanicalengineering,boththeoretical and applied, including: (cid:129) Engineering Design (cid:129) Machinery and Machine Elements (cid:129) Mechanical structures and stress analysis (cid:129) Automotive Engineering (cid:129) Engine Technology (cid:129) Aerospace Technology and Astronautics (cid:129) Nanotechnology and Microengineering (cid:129) Control, Robotics, Mechatronics (cid:129) MEMS (cid:129) Theoretical and Applied Mechanics (cid:129) Dynamical Systems, Control (cid:129) Fluids mechanics (cid:129) Engineering Thermodynamics, Heat and Mass Transfer (cid:129) Manufacturing (cid:129) Precision engineering, Instrumentation, Measurement (cid:129) Materials Engineering (cid:129) Tribology and surface technology Within the scopes of the series are monographs, professional books or graduate textbooks, edited volumes as well as outstanding PhD theses and books purposely devoted to support education in mechanical engineering at graduate and post- graduate levels. More information about this series at http://www.springer.com/series/11693 Junjie Zhang Bing Guo (cid:129) Jianguo Zhang Editors Simulation and Experiments of Material-Oriented Ultra-Precision Machining 123 Editors Junjie Zhang Jianguo Zhang Centerfor Precision Engineering Schoolof MechanicalScience Harbin Institute of Technology andEngineering Harbin, Heilongjiang, China HuazhongUniversity of Science andTechnology BingGuo Wuhan, China Schoolof Mechatronics Engineering Harbin Institute of Technology Harbin, Heilongjiang, China ISSN 2195-9862 ISSN 2195-9870 (electronic) SpringerTracts inMechanical Engineering ISBN978-981-13-3334-7 ISBN978-981-13-3335-4 (eBook) https://doi.org/10.1007/978-981-13-3335-4 LibraryofCongressControlNumber:2018961689 ©SpringerNatureSingaporePteLtd.2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. Theregisteredcompanyaddressis:152BeachRoad,#21-01/04GatewayEast,Singapore189721, Singapore Contents Fundamentals of Nanometric Cutting of Nanotwinned Copper . . . . . . . 1 Junjie Zhang, Yongda Yan and Tao Sun Investigation into Plastic Deformation and Machining-Induced Subsurface Damage of High-Entropy Alloys . . . . . . . . . . . . . . . . . . . . . 23 Jia Li and Qihong Fang Investigation into the Realization of a Single Atomic Layer Removal in Nanoscale Mechanical Machining of Single Crystalline Copper. . . . . 53 Pengzhe Zhu and Jianyong Li Thermally Assisted Microcutting of Calcium Fluoride Single Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Yan Jin Lee, Akshay Chaudhari, Jiong Zhang and Hao Wang Cutting Mechanism and Surface Formation of Ultra-Precision Raster Fly Cutting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Guoqing Zhang and Suet To Modeling and Experimental Study of Surfaces Optoelectronic Elements from Crystal Materials in Polishing . . . . . . . . . . . . . . . . . . . . 129 Yu. D. Filatov Advanced Applications of Elliptical Vibration Cutting in Micro/Nanomachining of Difficult-to-Cut Materials . . . . . . . . . . . . . . 167 Jianguo Zhang, Norikazu Suzuki and Eiji Shamoto Ultra-precision Machining of Hard and Brittle Materials with Coarse-Grained Grinding Wheels. . . . . . . . . . . . . . . . . . . . . . . . . . 201 Bing Guo and Qingliang Zhao Technology Precision Machining of Ceramic Balls in the V-Grooves of Variable Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 Oleg Pasichnyi v vi Contents The Contribution of Ion Plasma Sprayed Coating to Performance of Precision Diamond Dressing Tools. . . . . . . . . . . . . . . . . . . . . . . . . . . 265 V. Lavrinenko and M. Sheiko Nitrogen-Vacancy Color Centers in Diamond Fabricated by Ultrafast Laser Nanomachining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 Changkun Shi, Huihui Luo, Zongwei Xu and Fengzhou Fang Fundamentals of Nanometric Cutting of Nanotwinned Copper JunjieZhang,YongdaYanandTaoSun Abstract Nanotwinned (NT) Cu containing a high density of growth twin boundaries (TBs) is one emerging precious metal for its extraordinary properties ofhighstrength,intermediateductility,andhighelectricconductivity.Inthepresent work,weelucidatethedeformationmechanismsofnanotwinnedCusubjectedtothe diamond cutting-based nanometric cutting by means of molecular dynamics sim- ulations, with an emphasis on examining the influence of intrinsic microstructural parametersandextrinsicmachiningparameteronthenanometriccuttingprocesses. Theunderlyingdeformationmechanismsofthematerialsarefurthercorrelatedwith theevolutionofmachiningforcesandtheformationofmachinedsurfaceandchips. Our simulation results indicate that dislocation slip, dislocation–TBs interactions, and TBs-associated mechanisms work in parallel in the plastic deformation of the NTCu.Inparticular,dislocation–TBinteractionsandTBs-associatedmechanisms arestronglydependentonrakeangleofcuttingtool,TBinclinationangle,TBspac- ing,andgrainsize,whichleadstostronganisotropiccuttingresponseofNTCuthat originatesfromtheheterogeneouslocalizeddeformation. 1 Introduction Aninterfaceisacommonboundaryseparatingtwodifferentphasesand/orcrystals of different chemical compositions and/or crystallographic misorientations. Inter- faceshaveastrongimpactonthechemical,physical,andmechanicalpropertiesof materialsparticularlywithhighsurface-to-volumeratio,duetothechemicaland/or crystallographicdiscontinuity.Furthermore,theimpactofGBsisheavilyinfluenced bythestructuraltypeofGBs.Forinstance,whilenanocrystallinemetalswithaver- agegrainsizesdownintothenanometerregimearestrongbutbrittleduetoseverely confined space for dislocation motion, the introduction of aligned coherent twin boundaries(TBs)leadstoasuperiorcombinationofultra-highstrengthandinterme- B J.Zhang( )·Y.Yan·T.Sun CenterforPrecisionEngineering,HarbinInstituteofTechnology,Harbin150001,China e-mail:[email protected] ©SpringerNatureSingaporePteLtd.2019 1 J.Zhangetal.(eds.),SimulationandExperimentsofMaterial-Oriented Ultra-PrecisionMachining,SpringerTractsinMechanicalEngineering, https://doi.org/10.1007/978-981-13-3335-4_1 2 J.Zhangetal. diateductilityinNTmetals.ThehighstrengthofNTmetalsisaresultofTBsacting aseffectiveobstaclestodislocationmotion,whiletheeminentductilityisowingto theenhanceddislocationnucleationsitesprovidedbyTBs[1,2].TheNTmetalsthus have become emerging precious metals for the fabrication of advanced functional nanostructuresforitsextraordinarymechanicalproperties. Thediamondcutting-basednanometriccuttingisoneprominenttechniqueforthe fabricationofultra-smoothsurfaceaswellasprecisesurfacemicro-/nanostructures foritsnanometer-scalemachiningaccuracyandshapeaccuracy[3,4].Tofacilitate thedevelopmentofnanometriccuttingtechnique,afundamentalunderstandingofthe nanometriccuttingmechanismsatthenanometerscaleisessentiallyrequired.Since thetooledgeradiusiscomparablewithdepthofcutinthediamondcuttingprocess, the properties of workpiece material play an important even dominant role in the cuttingprocess,whichintroducesgreatchallengesinelucidatingmechanismsofNT metalsforitscomplexdeformationbehavior.TB-associatedmechanismsalsoplayan importantroleintheplasticdeformationofNTmetals,inadditiontodislocationslip thatdominatesintragrainplasticity.Specifically,dislocation–TBinteractionsinterms ofblocking,accommodationandtransition,aswellasTBmigrationanddetwinning, are common deformation modes of NT metals under external loads [5–10]. More recently, Wang et al. presented direct evidence of interaction of dislocation with a singlenanotwinbyperforminginsitunanoindentation[11].Althoughdeformation behaviors of NT metals under tension, torsion, compression, nanoindentation, and frictionhavebeenreportedinenormousliterature,thedislocation–TBinteractions, particularlyitsroleindeterminingthematerialremovalandevolutionofmachining forceinnanometriccuttingofNTmetals,arelargelyunknown. AtypicalcuttingrouteonNTmetalsinvolvesmultiplegrains,whichareofdiffer- entcrystallographicorientationsaswellastheinclinationanglesofalignedTBswith respecttothesurface.Specifically,theinclinationangleisalsoofgreatimportancein understandingofthenanometriccuttingmechanismsofNTCu,asinclinedinternal twin planes with varying Schmid’s factors possess distinguishable dislocation–TB interactions.Stukowskietal.[12]reportedthattheinclinationofdislocationtoTBsis stronglydependentonSchmid’sfactorsofindividualgrains.Brownetal.[13]showed thattheplacementofTBorientationwithrespecttotheloadingaxisgreatlyaffectsthe plasticityreversibilityofNTCu.Furthermore,Weietal.demonstratedthattheplastic deformationofNTCunanowirescanbegovernedpurelybyTBmigrationthrough designingtheinclinationangleofTBs[14].Jangetal.reporteddetwinning-governed plasticityinNTnanopillarscontaininginclinedTBs[15].Zhangetal.demonstrated thattheanisotropicfrictionalresponseofNTCuoriginatesfromtheheterogeneous localizeddeformation,whichisstronglyinfluencedbycrystallographicorientation, twin boundary orientation, and loading condition [16]. Therefore, it is intriguing to explore the effect of inclination angle on the nanometric cutting of NT Cu. It hasbeen demonstrated thattheTB-relatedimpactonthemechanical propertiesof NT metals is strongly dependent on the intrinsic sizes of internal microstructures. Recentexperimentaltestsandatomisticsimulationshaveshownthatthestrengthof NTCuhasastrongdependenceonTBspacing.Specifically,thestrengthofNTCu firstincreaseswithdecreasingTBspacinginaHall–Petchmanner.However,after FundamentalsofNanometricCuttingofNanotwinnedCopper 3 reachingthemaximumstrengthatthecriticalTBspacing,strengthsofteningoccurs whenTBsfurtherdecrease[17].Inaddition,itisfoundthatthecriticalTBspacing depends on grain size; i.e., the smaller the grain size, the smaller the critical twin thickness[2].Therefore,itisalsointriguingtostudytheeffectofTBspacingand grainsizeonthenanometriccuttingofNTmetals. Inlightofthesefindingsreportedintheliterature,inthepresentworkweperform MDsimulationstoinvestigatethenanometriccuttingofNTCuusingthediamond cuttingtool.Theinfluenceofrakeangle,inclinationangleofTBs,TBspacing,and grain size on the nanometric cutting in terms of elastic and plastic deformation of thematerial,variationsofmachiningforce,machinedsurfacequality,andchipfor- mation is further studied. Without loss of physics, we first consider single NT Cu samplesintheabsenceofgrainboundaries(GBs)butcontainingtwinplanesthatare parallel,inclined,andperpendiculartothefreesurface.Tocharacterizetheeffectof cuttingtoolgeometry,weperformnanometriccuttingsimulationsonthesameNT Cu sample containing 26° inclined TBs with respect to the free surface using dia- mondcuttingtoolwiththreedifferentrakeangles,whichshowsthattherakeangle of45°resultsinsmallerenergydissipationandbettermachinedsurfacequalitythan the other two rake angles of 0° and −45°. Then with the optimized rake angle of 45°,weaddresstheeffectofinclinationangleofTBsbyperformingcuttingalong thesamescratchingdirectionbutondifferentsurfaceswithvariedinclinationangles of the TBs cutting the surfaces. We found an inclination angle of 0° for the best machinedsurfacequality.MorepracticalpolycrystallineNTCuisthensimulated, inwhichtheeffectsoftwinspacingandgrainsizeonthecuttingprocessesarestud- ied.The transitionin deformation mechanisms, the evolution of cutting force, and the cutting-induced microstructure change are closely investigated. Based on such atomisticsimulations,wedemonstratethatcuttingofNTCuexhibitsstronghetero- geneouscharacteristic,originatingfromthestrongcompetitionbetweenindividual deformationmechanisms.Thechapterisorganizedasfollows:InSect.2,wedescribe detailsaboutthemodelsofNTCusamples,thenanoscratchingprocedure,andthe utilizeddefectanalysisandvisualizationtechniques.Theresultsofnanometriccut- ting of NT Cu with emphasis on the aspects of rake angle, inclination angle, TB spacing,andgrainsizearethenpresentedanddiscussedinSect.3.Finally,inSect.4 wesummarizetheresults. 2 SimulationMethod The utilized MD model of nanometric cutting of NT Cu is composed of a NT Cu substrate and a diamond cutting tool, as shown in Fig. 1. The common neighbor analysis(CNA)[18]isutilizedtoidentifytypesoflatticedefects,andthecoloring scheme is as follows: Blue stands for face-centered cubic (FCC) atoms, red for hexagonal close-packed (HCP) atoms, and gray for other atoms including surface atoms and dislocation cores. A single HCP-coordinated layer identifies a coherent

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.