ebook img

Simulation PDF

338 Pages·2022·6.521 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Simulation

Simulation This page intentionally left blank Simulation Sixth Edition Sheldon M. Ross Epstein Department of Industrial and Systems Engineering University of Southern California Los Angeles, CA, United States AcademicPressisanimprintofElsevier 125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1650,SanDiego,CA92101,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom Copyright©2023ElsevierInc.Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationabout thePublisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyright ClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions. ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein). Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatment maybecomenecessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingand usinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuch informationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,including partiesforwhomtheyhaveaprofessionalresponsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assume anyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability, negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructions,orideas containedinthematerialherein. ISBN:978-0-323-85739-0 ForinformationonallAcademicPresspublications visitourwebsiteathttps://www.elsevier.com/books-and-journals Publisher:KateyBircher EditorialProjectManager:SaraValentino ProductionProjectManager:ManchuMohan Designer:VictoriaPearsonEsser TypesetbyVTeX PrintedinTheUnitedStatesofAmerica Lastdigitistheprintnumber: 9 8 7 6 5 4 3 2 1 Contents Preface ix 1 Introduction 1 Exercises 3 2 Elementsofprobability 5 2.1 Samplespaceandevents 5 2.2 Axiomsofprobability 5 2.3 Conditionalprobabilityandindependence 6 2.4 Randomvariables 9 2.5 Expectation 11 2.6 Variance 13 2.7 Chebyshev’sinequalityandthelawsoflargenumbers 15 2.8 Somediscreterandomvariables 17 2.9 Continuousrandomvariables 23 2.10Conditionalexpectationandconditionalvariance 30 Exercises 32 References 37 3 Randomnumbers 39 Introduction 39 3.1 Pseudorandomnumbergeneration 39 3.2 Usingrandomnumberstoevaluateintegrals 40 Exercises 44 References 45 4 Generatingdiscreterandomvariables 47 4.1 Theinversetransformmethod 47 4.2 GeneratingaPoissonrandomvariable 53 4.3 Generatingbinomialrandomvariables 54 4.4 Theacceptance–rejectiontechnique 55 4.5 Thecompositionapproach 57 4.6 Thealiasmethodforgeneratingdiscreterandomvariables 59 4.7 Generatingrandomvectors 62 Exercises 63 vi Contents 5 Generatingcontinuousrandomvariables 69 Introduction 69 5.1 Theinversetransformalgorithm 69 5.2 Therejectionmethod 73 5.3 Thepolarmethodforgeneratingnormalrandomvariables 82 5.4 GeneratingaPoissonprocess 86 5.5 GeneratinganonhomogeneousPoissonprocess 87 5.6 Simulatingatwo-dimensionalPoissonprocess 90 Exercises 94 References 97 6 Themultivariatenormaldistributionandcopulas 99 Introduction 99 6.1 Themultivariatenormal 99 6.2 Generatingamultivariatenormalrandomvector 101 6.3 Copulas 104 6.4 Generatingvariablesfromcopulamodels 109 Exercises 109 7 Thediscreteeventsimulationapproach 111 Introduction 111 7.1 Simulationviadiscreteevents 111 7.2 Asingle-serverqueueingsystem 112 7.3 Aqueueingsystemwithtwoserversinseries 115 7.4 Aqueueingsystemwithtwoparallelservers 116 7.5 Aninventorymodel 119 7.6 Aninsuranceriskmodel 120 7.7 Arepairproblem 122 7.8 Exercisingastockoption 124 7.9 Verificationofthesimulationmodel 126 Exercises 127 References 130 8 Statisticalanalysisofsimulateddata 133 Introduction 133 8.1 Thesamplemeanandsamplevariance 133 8.2 Intervalestimatesofapopulationmean 138 8.3 Thebootstrappingtechniqueforestimatingmeansquareerrors 141 Exercises 147 References 149 9 Variancereductiontechniques 151 Introduction 151 9.1 Theuseofantitheticvariables 153 Contents vii 9.2 Theuseofcontrolvariates 160 9.3 Variancereductionbyconditioning 166 9.4 Stratifiedsampling 180 9.5 Applicationsofstratifiedsampling 190 9.6 Importancesampling 199 9.7 Usingcommonrandomnumbers 212 9.8 Evaluatinganexoticoption 213 9.9 Appendix:Verificationofantitheticvariableapproachwhen estimatingtheexpectedvalueofmonotonefunctions 217 Exercises 219 References 227 10 Additionalvariancereductiontechniques 229 Introduction 229 10.1TheconditionalBernoullisamplingmethod 229 10.2AsimulationestimatorbasedonanidentityofChen–Stein 233 10.3Usingrandomhazards 241 10.4Normalizedimportancesampling 246 10.5Latinhypercubesampling 250 Exercises 252 11 Statisticalvalidationtechniques 255 Introduction 255 11.1Goodnessoffittests 255 11.2Goodnessoffittestswhensomeparametersareunspecified 262 11.3Thetwo-sampleproblem 265 11.4ValidatingtheassumptionofanonhomogeneousPoissonprocess 271 Exercises 275 References 277 12 MarkovchainMonteCarlomethods 279 Introduction 279 12.1Markovchains 279 12.2TheHastings–Metropolisalgorithm 282 12.3TheGibbssampler 284 12.4ContinuoustimeMarkovchainsandaqueueinglossmodel 294 12.5Simulatedannealing 298 12.6Thesamplingimportanceresamplingalgorithm 300 12.7Couplingfromthepast 304 Exercises 306 References 308 Index 311 This page intentionally left blank Preface Overview In formulating a stochastic model to describe a real phenomenon, it used to be that one compromised between choosing a model that is a realistic replica of the actual situationandchoosingonewhosemathematicalanalysisistractable.Thatis,theredid notseemtobeanypayoffinchoosingamodelthatfaithfullyconformedtothephe- nomenon under study if it were not possible to mathematically analyze that model. Similarconsiderationshaveledtotheconcentrationonasymptoticorsteady-statere- sultsasopposedtothemoreusefulonesontransienttime.However,theadventoffast and inexpensive computational power has opened up another approach—namely, to trytomodelthephenomenonasfaithfullyaspossibleandthentorelyonasimulation studytoanalyzeit. Inthistextweshowhowtoanalyzeamodelbyuseofasimulationstudy.Inparticu- lar,wefirstshowhowacomputercanbeutilizedtogeneraterandom(moreprecisely, pseudorandom) numbers, and then how these random numbers can be used to gen- erate the values of random variables from arbitrary distributions. Using the concept of discrete events we show how to use random variables to generate the behavior of a stochastic model over time. By continually generating the behavior of the sys- temweshowhowtoobtainestimatorsofdesiredquantitiesofinterest.Thestatistical questionsofwhentostopasimulationandwhatconfidencetoplaceintheresulting estimatorsareconsidered.Avarietyofwaysinwhichonecanimproveontheusual simulation estimators are presented. In addition, we show how to use simulation to determinewhetherthestochasticmodelchosenisconsistentwithasetofactualdata. New to this edition • Newexercisesinmostchapters. • ThenewSection5.2.1showshowwecansimulateorderstatisticsbyfirstsimulat- ingbetarandomvariables. • There are many new examples in the text. Example 9p is concerned with using simulationtoestimatetheprobabilitythatasumofindependentandidenticallydis- tributedrandomvariablesexceedssomevalue.ThisexamplegivestheAsmussen– Kroese estimator along with an improvement of it. Example 9q uses simulation arguments to obtain computational bounds on P(X =max(X ,...,X )) when 1 1 n theX areindependentrandomvariables. i

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.