University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk UNIVERSITY OF SOUTHAMPTON FACULTY OF BUSINESS AND LAW School of Management Simulating the “Freshers’ Flu” An individual-level simulation approach utilising social networking and epidemiological models with a spatial component by Paul Davie Thesis for the degree of Master of Philosophy March 2015 ABSTRACT Despite a range of epidemiological models existing, the majority of these are cohort-level instead of individual-level models. Individual level models allow for contact tracing, where one can see who each individual interacts with. With the increasing popularity of social media amongst students, most noticeably the rise of Facebook, we have chosen to integrate an evolving social networking model with a conventional Susceptible-Infectious-Recovered (SIR) epidemiological model in order to simulate how infection is spread by contact with a growing netowkr of friends within a population. We considered the case of “Freshers’ Flu”, a form of seasonal influenza, in a closed population simulation of new students at university. This is a comparatively well-defined infection with known consistent values for the rate of infection and recovery, and is primarily spread by airborne transmission. Using the principles of discrete event simulation, and collecting data on lectures, social events and population demographics we created unique series of events per individual, combined with a personality type defined by their individual average daily friendship growth. We ran several scenarios which examined the default case of an infection spreading, the recommended university strategy of closing campus during an epidemic and the effects of vaccinating specific subsets of the population such as individuals on a particular degree course or those living in specific halls of residences. The model produced results which were consistent with a typical SIR model of an influenza outbreak, although smaller and over a longer time period. The social network and the formation of friends over time within the model were shown to have an impact on incidence, the number of new cases of infection per day. Prior to lectures commencing, the greatest influence on infection were the contacts made in halls of residences, with a background contribution from communal and social events. Post lectures, there was i a consistent spike in incidence after the formation of friendships based upon studying the same degree. ii iii Contents ABSTRACT ............................................................................................................................... i List of figures ....................................................................................................................... viii List of tables........................................................................................................................... x DECLARATION OF AUTHORSHIP ......................................................................................... xii Acknowledgements ............................................................................................................ xiv 1 Introduction ........................................................................................................................ 1 1.1 Aims of the model ....................................................................................................... 3 1.2 Purpose of the model .................................................................................................. 4 1.3 Potential benefits of individual-level models ............................................................. 5 2. Background ........................................................................................................................ 9 2.1 Epidemiological Modelling .......................................................................................... 9 2.2 Traditional compartmental models .......................................................................... 10 2.3 Types of Simulation ................................................................................................... 11 2.3.1 System dynamics ................................................................................................ 13 2.3.2 Dynamic Systems ................................................................................................ 13 2.3.3. Discrete Event Simulation ................................................................................. 14 2.3.4 Differences between Systems Dynamics and Discrete Event Simulation........ 14 2.3.5 Agent Based Models ........................................................................................... 16 2.3.6 Spatial Modelling ................................................................................................ 21 2.4 Social Network Analysis ............................................................................................ 24 2.5 Online Social Networks ............................................................................................. 29 2.6 Influenza and “freshers flu”. ..................................................................................... 32 3. Literature Review ............................................................................................................. 36 3.1 Network Modelling .................................................................................................... 36 3.2 Agent Based Modelling .............................................................................................. 44 3.3 Facebook reflecting the world .................................................................................. 62 3.4 Conclusions ................................................................................................................ 69 4. Modelling approach ........................................................................................................ 73 iv 4.1 Disease model ............................................................................................................ 73 4.2 Social networking model ........................................................................................... 79 4.3 Spatial model ............................................................................................................. 83 5. Challenges ....................................................................................................................... 90 5.1 Time handling ............................................................................................................ 90 5.2 Data requirements ..................................................................................................... 91 5.3 Potential solutions to the problems ......................................................................... 93 5.3.1 Data Collection .................................................................................................... 93 5.3.2 Time Handling ..................................................................................................... 95 6. Methodology .................................................................................................................... 99 6.1 The Programmatical Model ....................................................................................... 99 6.2 The Data ................................................................................................................... 106 6.2.1 Primary Data Sources – Social Network Model ............................................... 106 6.2.2 Secondary Data Sources ................................................................................... 109 6.3 The Disease Model .................................................................................................. 110 6.4 Location Data ........................................................................................................... 111 6.5 Data Collection ........................................................................................................ 115 6.5.1 Social Data Collection ....................................................................................... 118 6.6 Data Filtering ........................................................................................................... 127 6.7 Conducting the data collection .............................................................................. 130 6.8 Storing the Data ....................................................................................................... 138 6.9 Parameters for the model from the data ............................................................... 141 7. Results ............................................................................................................................ 147 7.1 Scenarios .................................................................................................................. 147 7.2 Replications & sensitivity ........................................................................................ 151 7.3 Input Data ................................................................................................................ 152 7.3.1 Event Data ......................................................................................................... 154 7.4 Model Validation ...................................................................................................... 165 7.4.1 Comparison with Compartmental Model ........................................................ 169 7.4.2 Varying the rate of infection ............................................................................ 173 7.4.3 Varying the rate of Friend Growth ................................................................... 178 v 7.4.4 Varying the population vaccination rate ......................................................... 186 7.5 Default Scenario ....................................................................................................... 188 7.6 Scenario 1: Closing campus .................................................................................... 194 7.7 Scenario 2: Targeting specific groups within the population .............................. 197 7.8 Scenario 3: Remove the “popular” people.............................................................. 206 8 Discussion ....................................................................................................................... 211 8.1 Friend Growth .......................................................................................................... 211 8.2 Impact of events ...................................................................................................... 213 8.3 Impact of friends ..................................................................................................... 214 9 Future Work & Development.......................................................................................... 217 9.1 Events & Timetables ................................................................................................ 217 9.2 Expanding the spatial component.......................................................................... 219 9.3 Expanding the infection .......................................................................................... 220 9.4 Personality types ...................................................................................................... 222 9.5 Improving the social network ................................................................................. 224 10 Conclusion .................................................................................................................... 226 11 Further Reflections ....................................................................................................... 237 11.1 Changes in Technology & Society ........................................................................ 237 11.2 Research Questions ............................................................................................... 238 11.3 Changing trends of social media ......................................................................... 240 11.4 Data collection from online social networks ....................................................... 241 11.4.1 Twitter, not Facebook .................................................................................... 243 11.5 Control strategies in academic environments ..................................................... 244 11.6 Research Questions Revisited ............................................................................... 245 11.7 Critical Appraisal ................................................................................................... 248 12. References ................................................................................................................... 250 vi vii
Description: