Simulated SAR with GIS Data and Pose Estimation using Affine Projection Martin Divak Space Engineering, master's level 2017 Luleå University of Technology Department of Computer Science, Electrical and Space Engineering Simulated SAR with GIS Data and Pose Estimation using Affine Projection Author Martin Divak Thesis supervisor Zoran Sjanic Examiner Goerge Nikolakopoulos Co-supervision Christoforos Kanellakis TheworkpresentedinthisthesiswasconductedatSaabAeronauticsinthesectionSensorFusionandTactical Control. Interest in the subjects described in this thesis are of interest due to the sections development of Decision Support Systems for Aircraft applications. Abstract Pilots or autonomous aircraft need knowledge of where they are in relation to the environment. On board aircraft there are inertial sensors that are prone to drift which needs corrections by referencing against a known item, place, or signal. Satellite data is not always reliable due to natural degradation or intentional jamming so aircraft are dependant on visual sensors for navigation. Synthetic aperture radar, SAR, is an interesting candidate as navigation sensor. SAR is a collection of methods used to generate high resolution radar images using movement to increase its apparent antenna size, or aperture. Radar sensors are not de- pendant o day light, unlike optical sensors. Infrared sensors can see in the dark but are affected by weather conditions. Radar sensors active sensors, transmitting pulses and measuring echoes, in the microwave spec- trum of electromagnetic radiation that does not have strong interactions with meteorological phenomena. To use radar images in qualitative and quantitative analysis they must be registered with geographical in- formation. Position data on an aircraft is not sufficient to determine with certainty what or where it is one is looking at in a radar image without referencing other images over the same area. To lay an image on top of another image and transforming it such that they match in image content position is called registration. One way of georeferencing is to simulate a SAR image and register a real image, from the same view, using corresponding reference points in both images. This present work demonstrate that a terrain model can be split up and classified into different types of radar scatterers. Different parts of the terrain yielding different typesofechoesincreasestheamountofradarspecificcharacteristicsinsimulatedreferenceimages. Aterrain that is relatively flat having to geometric features, may still be used to create simulated radar images for image matching. Computer vision with other type of sensors have had a long history compared to radar based systems. Corresponding methods in radar have not had the same impact. Among these systems that have had a lot of underlying development include stereoscopic methods where several images are taken of the same area but from different views, meaning angles and positions, where image depth can be extracted from the stereo images. Stereoscopic methods in radar image analysis have mainly been used to reconstruct objects or environments seen from known parallel flight and orbital trajectories. The reverse problem, estimating positionandattitudegivenaknownterrain,isnotsolved. Thisworkpresentsaninterpretationoftheimaging geometry of SAR such that existing methods in computer vision may be used to estimate the position from which a radar image has been taken. This is a direct image matching without requiring registration that is necessary for other proposals of SAR-based navigation systems. By determination of position continuously from radar images aircraft could navigate independent of day light, weather, or satellite data. Page i Sammanfattning Piloter eller autonoma flygfarkoster beh¨over k¨annedom om var n˚agonstans de befinner sig i relation till omgivningen. Ombord p˚a flygfarkoster s˚a finns det tr¨oghetssensorer som p˚averkas av drift vilket beh¨over korrigeras genom referering mot ett k¨ant f¨orem˚al, plats, eller signal. Satellitdata ¨ar inte alltid p˚alitlig p˚a grundavnaturligdegraderingelleravsiktligst¨ornings˚a¨arenflygfarkostberoendeavvisuellasensorerf¨oratt navigera. Syntetiskaperturradar,SAR,¨arenintressantkandidatsomnavigationssensor. SAR¨arensamling metoder som anv¨ands f¨or att generera h¨oguppl¨osta radarbilder genom att anv¨anda r¨orelse f¨or att ¨oka dess apparenta antennstorlek, eller apertur. Radarsensorer ¨ar inte beroende av dagsljus som optiska sensorer ¨ar. Infrar¨oda sensorer kan se i mo¨rker men p˚averkas av v¨aderf¨orh˚allanden som kan blockera infrar¨od str˚alning. Radarsensorer¨araktivasensorer,skickarpulserochm¨aterekon,imikrov˚agsspektrumetavelektromagnetisk str˚alning som inte har s¨arskilt starka interaktioner med meteorologiska effekter. F¨or att kunna anv¨anda radarbilder f¨or kvantitativ s˚av¨al som kvalitativ analys s˚a m˚aste registreras med ge- ografiskinformation. Positionsdatap˚aenflygfarkost¨arintetillr¨ackligf¨orattkunnabest¨ammameds¨akerhet vad eller var man ser i en radarbild utan att referera mot andra bilder ¨over samma omr˚ade. Att l¨agga en bild ovanp˚a en annan och transformera de s˚a att bildinneh˚allets positioner matchar kallas f¨or registrering. Ett s¨att att g¨ora det p˚a ¨ar att simulera hur en radarbild ser ut, givet att terr¨angen ¨ar k¨and, fr˚an samma vy f¨or att relatera bildkoordinaterna med v¨arldskoordinater. I detta arbete demonstreras att en terr¨angmodell kan delas upp och klassificeras som olika typer av radarspridare. Att olika delar av terr¨angen ger olika ekon ¨okar m¨angden radarspecifik karakteristik i simulerade referensbilder. En terr¨ang som till och med ¨ar relativt platt, allts˚a inte har n˚agra radarspecifik geometrisk karakteristik, kan ¨and˚a anv¨andas till att skapa simulerade radarbilder som kan anv¨andas till bildj¨amf¨orelser. Datorsynmedandratyperavsensorerharenl¨angrehistoriaj¨amf¨ortmedradarbaseradesystem. Motsvarande metoder inom radar har inte haft lika stort genomslag. Bland dessa system som har haft mycket bakomlig- gande utveckling inkluderar stereoskopiska metoder d¨ar flera foton tas ¨over samma omr˚ade men fr˚an olika vyer, allts˚a vinklar och positioner, d¨ar bilddjup kan extraheras fr˚an stereobilderna. Stereoskopiska metoder inom radarbildanalys har huvudsakligen anv¨ants till att rekonstruera objekt eller omgivningar som ses fr˚an k¨anda parallela flyg- eller omloppsbanor. Det omv¨anda problemet, estimering av position och attityd givet en k¨and terr¨ang, har inte en l¨osning. Detta arbete tar upp en tolkning av avbildningsgeometrin s˚a att existerande metoder inom datorsyn kan nyttjas till att estimera positionen fr˚an vilken en radarbild har tagits. Detta ¨ar en direktj¨amf¨orelse utan att beh¨ova bildregistrering, som kr¨avs enligt andra f¨orslag p˚a SAR-baserade Navigationssystem. Genom att kunna best¨amma position kontinuerligt fr˚an radarbilder s˚a kan flygfarkoster navigera oberoende av dagsljus, v¨ader, och satellitdata. Page ii List of Acronyms AESA Active Electronically Scanned Array ATR Automatic Target Recognition BRDF Bidirectional Reflectance Distribution Function CAD Computer-aided Design CDT Constrained Delaunay Triangulation CP Control Point CPU Central Processing Unit CV Computer Vision DEM Digital Elevation Map DLR Deutsches zentrum fu¨r Luft- und Raumfahrt DSM Digital Surface Map DTM Digital Terrain Map ESA European Space Agency FOV Field Of View GCP Ground Control Point GIS Geographic Information System GMTI Ground Moving Target Identification GNSS Global Navigation Satellite System INS Inertial Navigation System InSAR SAR Interferometry KvD Koenderink and van-Doorn Lidar Light Detecton and Ranging LOS Line-of-Sight MTI Moving Target Identification NLOS Non-Line-of-Sight Radar Radio Detection and Ranging RCS Radar Cross-section. SAR Synthetic Aperture Radar SLAM Simultaneous Localisation and Mapping Sonar Sound Navigation and Ranging UAV Unmanned Aerial Vehicle Mentioned throughout the thesis are examples of letter designations of electromagnetic spectral bands. The letterdesignationsoftheelectromagneticspectrumusedinthisthesisfollowsIEEEstandardnomenclature.1 Letter VHF UHF L S C X Ka K Ku V W mm GHz 0.03-0.3 0.3-1 1-2 2-4 4-8 8-12 12-18 18-27 27-40 40-75 75-110 110-300 HH, VV, and HV represent Transmit-Receive Horizontal/Vertical linear polarization modes. 1IEEEstd521-2002 Page iii Mathematical Notation r Slant Range V¯ Velocity Vector R¯ Range Vector f Doppler Centroid Frequency DC ω Squint ω Azimuthal Beamwidth w ∆t Illumination Time θ Angular Width in Range/Swath Direction w θ Depression Angle θ Near swath grazing incidence near θ Far swath grazing incidence far θ Difference in depression angle for parallel stereo channels diff C Camera or Intrinsic Matrix C SAR Intrinsic Matrix SAR P Normalized Orthographic Projection Matrix (cid:107) P Affine Projection Matrix Aff P SAR Projection Matrix SAR G Pose or Extrinsic Matrix G Virtual Orthographic Camera Pose ⊥ R Rotation Matrix t¯ Translation Vector u Horizontal Image Centre 0 v Vertical Image Centre 0 c Speed of Light 0 λ Wavelength δ Slant Range Resolution r δ Azimuth Resolution az R Bidirectional Reflectance Distribution Function ϕ Incidence Angle inc ϕ Reflection Angle ref Page iv
Description: