ebook img

Silicon Ring Resonator Add-Drop Multiplexers PDF

108 Pages·2011·8.31 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Silicon Ring Resonator Add-Drop Multiplexers

Silicon Ring Resonator Add-Drop Multiplexers by RobertBoeck B.A.Sc.,TheUniversityofBritishColumbia,2009 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MasterofAppliedScience in THE FACULTY OF GRADUATE STUDIES (ElectricalandComputerEngineering) TheUniversityOfBritishColumbia (Vancouver) October2011 (cid:13)c RobertBoeck,2011 Abstract Wavelength-divisionmultiplexing(WDM)usingsilicon-on-insulator(SOI)waveg- uideshavebecomeanattractiveareaofresearchtodecreasethefootprintofoptical interconnects as well as to ensure high speed data transmission. Specifically, re- search into using SOI ring resonator add-drop filters for WDM applications have been increasingly pursued. A ring resonator coupled on both sides by straight waveguidesenablesonetoadd(multiplex)ordrop(demultiplex)wavelengths. Us- ing series-coupled ring resonators, with each resonator having a different length, enables better spectral performance than single ring resonators. In this thesis, we haveanalyzedthepropertiesofSOIstripwaveguidesanddirectionalcouplers. We have compared different spectral properties of single and series-coupled ring res- onators and showed the advantages of using series-coupled ring resonators. SOI strip waveguide series-coupled racetrack resonators exhibiting the Vernier effect were designed by us and fabricated at a leading edge foundry. The free spectral rangewas36nm,whichiscomparabletothespanoftheopticalC-band. Thedrop port response showed interstitial peak suppression between 9 dB and 17 dB and minimalresonancesplitting. ii Preface I am the main author of the conference paper and Optics Express journal paper titled, “Experimental Demonstration of the Vernier Effect using Series-Coupled Racetrack Resonators”[6] and “Series-Coupled Silicon Racetrack Resonators and the Vernier Effect: Theory and Measurement,”[7] respectively. Over a span of eight months, I proposed the design of the Vernier effect device, modelled and simulated the device using analytical and numerical methods, and optimized its performance. IthencreatedadesignlayoutthatwasfabricatedatIMEC.Icharac- terizedthedeviceusinganexperimentalset-upcreatedbyDr. NicolasRouger. My supervisors, Drs. Nicolas Jaeger and Lukas Chrostowski, guided my research by providingimportantinsightsintothedesignofthedeviceaswellaseditingdrafts oftheconferencepaper,poster,andjournalpaper. Thecompletelistofpublicationsare: 1. R. Boeck, N. A. F. Jaeger, and L. Chrostowski, “Experimental Demon- strationoftheVernierEffectusingSeries-CoupledRacetrackResonators,in2010 International Conference on Optical MEMS & Nanophotonics, Sapporo, Japan, Aug. 9-12,2010. 2. R.Boeck,N.A.Jaeger,N.Rouger,andL.Chrostowski,“Series-coupledsil- iconracetrackresonatorsandtheVerniereffect: theoryandmeasurement,”Optics Express,18(24): 2515125157,Nov. 2010. iii Table of Contents Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii TableofContents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv ListofTables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi ListofFigures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 CurrentStateofOpticalInterconnects . . . . . . . . . . . . . . . 1 1.2 LiteratureReview . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 ThesisOrganization . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Silicon-On-InsulatorRingResonators . . . . . . . . . . . . . . . . . 12 2.1 Silicon-On-InsulatorStripWaveguides . . . . . . . . . . . . . . . 13 2.1.1 EffectiveIndexandGroupIndex . . . . . . . . . . . . . . 18 2.1.2 DirectionalWaveguideCouplers . . . . . . . . . . . . . . 20 2.2 SignalFlowGraphsandMason’sRule . . . . . . . . . . . . . . . 27 2.3 SingleRingResonatorAdd-DropFilters . . . . . . . . . . . . . . 30 2.3.1 SingleRingResonatorAdd-DropFilterTransferFunctions 30 iv 2.3.2 SpectralCharacteristicsoftheSingleRingResonatorAdd- DropFilters . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.4 Series-CoupledRingResonatorAdd-DropFilters . . . . . . . . . 45 2.4.1 Series-Coupled Ring Resonator Add-Drop Filter Transfer Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.4.2 SpectralCharacteristicsofSeries-CoupledRingResonator Add-DropFilters . . . . . . . . . . . . . . . . . . . . . . 48 3 Series-Coupled Silicon Racetrack Resonators and the Vernier Ef- fect: TheoryandMeasurement . . . . . . . . . . . . . . . . . . . . . 65 3.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.2 ExperimentalResults . . . . . . . . . . . . . . . . . . . . . . . . 70 3.3 Curve-Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4 ConclusionandSuggestionsforFutureWork . . . . . . . . . . . . . 78 4.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.2 SuggestionsforFutureWork . . . . . . . . . . . . . . . . . . . . 79 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A DerivationoftheFreeSpectralRange . . . . . . . . . . . . . . . . . 89 B Derivation of the Full-Width-at-Half-Maximum and the Quality Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 C DerivationoftheResonanceSplittingWavelengths . . . . . . . . . 94 v List of Tables Table1.1 Performanceofcommercialsingle-channelDWDMfilters. . . 3 Table2.1 Propagationlossesversuswaveguidewidth[8]. . . . . . . . . 15 vi List of Figures Figure1.1 Exampleofathree-channelDWDMsystem. . . . . . . . . . 2 Figure1.2 (a)showshowaringresonatorcanbeusedasademultiplexer and(b)showshowitcanbeusedasamultiplexer . . . . . . . 4 Figure1.3 (a)ImageofcascadedSOIdiscresonatorsexhibitingtheVernier effectand(b)theexperimentaldropportresponse[32]. (cid:13)c Optical SocietyofAmerica,2006,adaptedbypermission.. . . . . . . 9 Figure1.4 (a)SEMofseries-coupledSOIracetrackresonatorsexhibiting the Vernier effect and (b) theexperimental drop port response [57]. (cid:13)c ChineseOpticsLetters,2009,adaptedbypermission. 10 Figure2.1 GeneralstructureofanSOIstripwaveguide. . . . . . . . . . 14 Figure2.2 Refractiveindexof(a)siliconand(b)silicondioxideversusλ 16 Figure2.3 Refractiveindexof(a)siliconand(b)silicondioxideversusT 17 Figure2.4 (a) n versus λ and (b) n versus λ for various waveguide eff g widths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure2.5 (a)n and(b)n versusT . . . . . . . . . . . . . . . . . . . 20 eff g Figure2.6 Schematicofadirectionalcoupler. . . . . . . . . . . . . . . . 21 Figure2.7 Schematicshowingthecross-sectionofadirectionalcoupler. . 22 Figure2.8 Normalized electric field (Ex) of the (a) even and (b) odd su- permodeforagapdistanceof200nm . . . . . . . . . . . . . 23 Figure2.9 Difference between the effective index of the even and of the oddsupermodesversuswavelengthforvariouswaveguidewidths 24 Figure2.10 |κ|2 and|t|2 versusL foragapdistanceof200nm . . . . . . 26 c Figure2.11 |κ|2 versusλ forvariouswaveguidewidths . . . . . . . . . . 26 vii Figure2.12 Example of a signal flow graph with two forward paths and onefeedbackloop(adaptedfrom[39]). . . . . . . . . . . . . 27 Figure2.13 Reductionmethodusedtodeterminethetransferfunctionx /x 4 1 where (a) shows feedback transformation, (b) shows cascade transformation,and(c)showsthemultipathtransformation. . 28 Figure2.14 (a) Schematic of ring resonator add-drop filter and (b) shows thefeedbackloopandforwardpaths. . . . . . . . . . . . . . 31 Figure2.15 n versus λ and curve-fit for a waveguide width and height eff of500nmand220nm,respectively . . . . . . . . . . . . . . 33 Figure2.16 (a) shows the through port and drop port spectral characteris- tics of a single ring resonator add-drop filter and (b) shows a zoominoftheresonancepeakofthedropportresponse. . . . 34 Figure2.17 IL versus |κ |2 =|κ |2 for (a) various propagation losses drop 1 2 and(b)forvariousresonatorlengths . . . . . . . . . . . . . . 36 Figure2.18 OBRR versus |κ |2 =|κ |2 for (a) various propagation losses 1 2 and(b)forvariousresonatorlengths . . . . . . . . . . . . . . 38 Figure2.19 ER versus|κ |2=|κ |2for(a)variouspropagationlosses through 1 2 and(b)forvariousresonatorlengths . . . . . . . . . . . . . . 40 Figure2.20 ∆λ versus|κ |2=|κ |2for(a)variouspropagationlosses FWHM 1 2 and(b)forvariousresonatorlengths . . . . . . . . . . . . . . 42 Figure2.21 Q versus |κ |2 =|κ |2 for (a) various propagation losses and 1 2 (b)forvariousresonatorlengths . . . . . . . . . . . . . . . . 44 Figure2.22 (a) shows the schematic of series-coupled ring resonator add- dropfilterand(b)showsthefeedbackloops. . . . . . . . . . 46 Figure2.23 (a), (b), (c), and (d) show the forward paths for the series- coupledringresonatoradd-dropfilter. . . . . . . . . . . . . . 47 Figure2.24 Comparison between the drop port response of a single and series-coupledringresonatoradd-dropfilter . . . . . . . . . . 49 Figure2.25 Dropportresponsesensitivitytovariousvaluesof|κ |2 witha 2 fixedvaluefor|κ|2 . . . . . . . . . . . . . . . . . . . . . . . 51 Figure2.26 |κdrop|2 versus |κ|2 for (a) various propagation losses and (b) c forvariousresonatorlengths . . . . . . . . . . . . . . . . . . 52 viii Figure2.27 (a) shows the resonance splitting wavelengths versus |κ |2 for 2 a fixed |κ|2 = 0.001 and resonator lengths equal to 100 µm using equations 2.47 and 2.48 and the closely matched values determinedgraphicallyfromthedropportresponse. (b)shows theresonancesplittingwavelengthsversus|κ|2forafixed|κ |2 2 =0.3. Theincreasingerrorinusingequations2.47and2.48is clearly shown for large values of |κ|2 compared to the values determinedfromthedropportresponse . . . . . . . . . . . . 54 Figure2.28 OBRR atκdropversus|κ|2for(a)variouspropagationlosses 2ring c and(b)forvariousresonatorlengths . . . . . . . . . . . . . . 56 Figure2.29 Through port response sensitivity for various values of |κ |2 2 when|κ|2 isfixedat0.5 . . . . . . . . . . . . . . . . . . . . 57 Figure2.30 ThroughportinsertionlossatβL=2πmversus|κ |2 forvari- 2 ousvaluesof|κ|2 . . . . . . . . . . . . . . . . . . . . . . . . 59 Figure2.31 Comparisonbetween|κthru|2 and|κdrop|2 versus|κ|2. . . . . 60 c c Figure2.32 Comparison of single and series-coupled ring resonator add- drop filters based on (a) the through port ER and (b) the drop portOBRR . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Figure2.33 Comparison of the drop port response of series-coupled ring resonatoradd-dropfilterswithidenticalanddifferentringres- onatorlengthsthathaveFSRsgreaterthanthespanoftheC-band. 64 Figure3.1 Theoretical drop port response of the un-optimized device il- lustrating the twin peaks, extended FSR, and minimum inter- stitialpeaksuppression,and(b)themainresonancepeaksplit- ting[7]. (cid:13)c OpticalSocietyofAmerica,2010,bypermission . 68 Figure3.2 (a) Theoretical drop port response of the optimized device il- lustrating large interstitial peak suppression and (b) no main resonance splitting [7]. (cid:13)c Optical Society of America, 2010, bypermission . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Figure3.3 SEMof(a)fabricatedseries-coupledracetrackresonators,and (b) coupling region [7]. (cid:13)c Optical Society of America, 2010, bypermission . . . . . . . . . . . . . . . . . . . . . . . . . . 71 ix Figure3.4 (a) Experimental and curve-fit drop port response for series- coupledracetrackresonators,(b)showstheminimalmainres- onance splitting (zoom in of Figure 3.4(a)), and (c) shows the straightwaveguidetransmissionresponseusedforcalibration. (Although minor modifications were made to the above fig- ures, permission was obtained to reproduce figures from [7]). (cid:13)c OpticalSocietyofAmerica,2010,bypermission. . . . . . 73 Figure3.5 (a) Main resonance intensity, (b) minimum interstitial peak suppression,and(c)mainresonancesplittingdepthversus|κ |2, 1 |κ |2, and |κ |2. Purple circles indicate values used for curve- 2 3 fitting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Figure3.6 Experimentaldropportresponseforsingleracetrackresonators with a radius of 6.545 µm and 4.225 µm. (Although minor modifications were made to the above figure, permission was obtained to reproduce the figure from [7]). (cid:13)c Optical Society ofAmerica,2010,bypermission. . . . . . . . . . . . . . . . 77 Figure4.1 SchematicofaC-banddemultiplexerusingseries-coupledring resonatorsandon-chipGePINdetectors. . . . . . . . . . . . 81 x

Description:
Eleven-channel second-order silicon microring-resonator filterbank with tunable channel spacing. In 2010 Conference on Lasers and. Electro-Optics (CLEO) and Quantum Electronics and Laser Science. (QELS), pages 1–2, 2010. [16] S. Darmawan and M. K. Chin. Critical coupling, oscillation, reflection,
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.