Editedby JohnA.Rogersand Jong-HyunAhn SiliconNanomembranes EditedbyJohnA.RogersandJong-HyunAhn Silicon Nanomembranes FundamentalScienceandApplications Editors AllbookspublishedbyWiley-VCHare carefullyproduced.Nevertheless,authors, Prof.JohnA.Rogers editors,andpublisherdonotwarrantthe Univ.IllinoisUrbana-Champaign informationcontainedinthesebooks, Dept.Mat.Science&Engineering includingthisbook,tobefreeoferrors. FrederickSeitzMaterialsRes.Lab Readersareadvisedtokeepinmindthat BeckmanInstituteforAdvancedScience statements,data,illustrations,procedural andTechnology detailsorotheritemsmayinadvertently GoodwinAvenue beinaccurate. UrbanaIL61801 USA LibraryofCongressCardNo.:appliedfor Prof.Jong-HyunAhn BritishLibraryCataloguing-in-Publication YonseiUniversity Data SchoolofElectr.andElectronicsEng. Acataloguerecordforthisbookisavail- Eng.BuildingIII ablefromtheBritishLibrary. 50Yonsei-ro,Seodaemoon-gu 03722Seoul Bibliographicinformationpublishedbythe RepublicofKorea DeutscheNationalbibliothek TheDeutscheNationalbibliothek liststhispublicationintheDeutsche Cover Nationalbibliografie;detailed Background-GazelleTechnologies bibliographicdataareavailableonthe Foreground-fotolia. Internetat<http://dnb.d-nb.de>. Theimageswithinthecirclesarekindly providedbytheeditors ©2016Wiley-VCHVerlagGmbH&Co. KGaA,Boschstr.12,69469Weinheim, Germany Allrightsreserved(includingthoseof translationintootherlanguages).Nopart ofthisbookmaybereproducedinany form – byphotoprinting,microfilm,or anyothermeans – nortransmittedor translatedintoamachinelanguage withoutwrittenpermissionfromthe publishers.Registerednames,trademarks, etc.usedinthisbook,evenwhennot specificallymarkedassuch,arenottobe consideredunprotectedbylaw. PrintISBN:978-3-527-33831-3 ePDFISBN:978-3-527-69099-2 ePubISBN:978-3-527-69101-2 MobiISBN:978-3-527-69102-9 oBookISBN:978-3-527-69100-5 CoverDesign SchulzGrafik-Design, Fußgönheim,Germany Typesetting SPiGlobal,Chennai,India PrintingandBinding Printedonacid-freepaper V Contents ListofContributors XIII PartI MaterialsandProcesses 1 1 Synthesis,Assembly,andApplicationsofSemiconductor Nanomembranes 3 ZhengYan,KewangNan,andJohnA.Rogers 1.1 Introduction 3 1.2 StrategiesforFormingSiliconNanomembranes 4 1.2.1 SelectiveEtchingtoReleaseNanomembranesfromLayered Assemblies 4 1.2.2 AnisotropicEtchingtoReleaseSiliconNanomembranesfromBulk SiliconWafers 6 1.3 TransferPrintingforDeterministicAssembly 7 1.3.1 Introduction 7 1.3.2 MechanicsofTransferPrinting 9 1.3.3 TransferPrintingforSingle-andMultilayerDeterministic Assembly 10 1.4 CompressiveBucklingforDeterministicAssembly 11 1.4.1 Introduction 11 1.4.2 BucklingonCompliantSubstratesforWavyLayouts 13 1.4.3 PatternedAdhesionforControlled,Large-ScaleBuckling 16 1.4.4 DeterministicAssemblyofComplex,Three-Dimensional ArchitecturesbyCompressiveBuckling 18 1.5 FunctionalDevicesMadefromSiliconNanomembranes 21 1.5.1 PhysicallyTransientElectronics 21 1.5.2 Injectable,Cellular-ScaleOptoelectronicDevicesfortheBrain 23 1.5.3 Three-DimensionalIntegumentaryMembranesforSpatiotemporal CardiacMeasurements 25 1.5.4 ArthropodEyesInspiredDigitalCamera 27 1.5.5 CephalopodSkinsInspiredOptoelectronicCamouflageSystems 29 1.6 ConclusionsandOutlook 29 References 31 VI Contents 2 ModelsofReactiveDiffusionforResorbableElectronics 37 HuanyuCheng,YonggangHuang,andJohnA.Rogers 2.1 Introduction 37 2.2 HydrolysisofSiliconNanomembranes 39 2.3 Material-LevelDissolution 41 2.4 DissolutionofDevicewithLayeredStructures 47 2.5 DiscussionandConclusion 53 Acknowledgments 54 References 54 PartII ApplicationsinBio-IntegratedandFlexibleElectronics 57 3 TransparentandFoldableElectronicsEnabledbySi Nanomembranes 59 HoukJang,TanmoyDas,WonhoLee,andJong-HyunAhn 3.1 Introduction 59 3.2 Fabrication 61 3.3 Characterization 64 3.3.1 MechanicalPropertiesofSiNMinBendingandStretching 65 3.3.2 OpticalProperties 67 3.3.3 PiezoresistiveEffectinSiNM 69 3.4 ConfigurationsofTransparentandFoldableElectronicDevices 72 3.4.1 RepresentativeMaterialsforTransparentandFoldable Electronics 72 3.4.2 ElectricalandOpticalPropertiesofTransparentTFTs 73 3.4.3 ModificationoftheBendingStiffnesswithSubstrateThickness 75 3.4.4 ElectromechanicalPropertiesofFoldableTFTs 77 3.4.5 ControlofStiffnessbyThinningofSiforStretchableElectronic Devices 78 3.4.6 ControlofStrainDistributionbyGeometricalDesign 79 3.4.7 MechanicalPropertiesofStretchableInverters 82 3.5 ConcludingRemarks 83 References 84 4 High-PerformanceFlexibleElectronicandOptoelectronicDevicesby MechanicalExfoliationfromaBrittleSubstrate 89 DavoodShahrjerdi 4.1 Introduction 89 4.2 Steady-StateSubstrateCrackingParalleltotheInterfaceina Bilayers 90 4.3 Spalling-ModeFractureforLayerTransfer 92 4.4 High-PerformanceFlexibleElectronicsbyControlledSpalling 95 4.4.1 Ultra-Low-PowerNanoscaleSiliconIntegratedCircuitson Plastic 95 4.4.2 ElectricalCharacteristicsofFlexibleDevicesandCircuits 100 Contents VII 4.4.3 EffectofStrainonDevicePerformance 102 4.4.4 Very-High-EfficiencyFlexibleTandemSolarCells 104 4.5 FutureDirections 106 References 108 5 High-Speed,FlexibleElectronicsbyUseofSiNanomembranes 113 YeiHwanJung,Jung-HunSeo,WeidongZhou,andZhenqiangMa 5.1 Introduction 113 5.2 FabricationofHigh-SpeedMOSFETs 114 5.2.1 DopingProfileSettings 114 5.2.2 GenericFabricationProcess 115 5.3 DesignandPerformanceofHigh-SpeedMOSFET 118 5.4 High-SpeedMOSFETUsingStrainedSiNMs 121 5.4.1 SiGe-BasedStrainEngineering 121 5.4.2 FabricationofFlexibleStrained-ChannelRFTFTs 125 5.4.3 DC/RFCharacteristicsofFlexibleStrained-Channel RFTFTs 126 5.5 High-SpeedDiodesandSwitcheswithSiNMs 129 5.5.1 FabricationofFlexibleRFDiodesandSwitches 129 5.5.2 RFCharacteristicsofFlexibleRFDiodes/Switches 132 5.5.3 AnalyticalModelingofFlexibleRFDiodes/Switches 134 5.6 OutlooktowardFutureFastElectronics 135 References 137 6 FlexibleandStretchableBiointegratedElectronicsUsingSilicon Nanomembranes 143 JaeminKim,MincheolLee,HyungJoonShim,andDae-HyeongKim 6.1 Introduction 143 6.2 OverviewofFlexibleOrganic/NW-BasedBiomedical Devices 144 6.2.1 FlexibleOrganicBiomedicalDevices 144 6.2.2 FlexibleNW-BasedBiomedicalDevices 147 6.3 Flexible/StretchableSingle-CrystalSilicon-BasedBiomedical Devices 148 6.3.1 FabricationProcessesofSiNMElectronics 148 6.3.2 HumanMotionDetectorsUsingWearableSiNMStrain Gages 150 6.3.3 OrganMotionDetectorsUsingImplantableSiNMStrain Gages 152 6.3.4 SiNMTemperatureSensorsforPhysiologicalMonitoring 154 6.3.5 IntegratedArrayConfigurationofSiNMSensors 155 6.4 ActivelyMultiplexedElectrophysiologyUsingSiNM Transistors 157 6.4.1 MultiplexedElectrodeArrayforNeuralActivityMonitoring 158 VIII Contents 6.4.2 MultiplexedElectrodeArrayforCardiacElectrophysiology Mapping 160 6.5 Conclusions 161 Acknowledgments 162 References 162 7 FlexibleSiNanomembraneSensorforHuman–Machine Interface 169 Min-SeokKim 7.1 Introduction 169 7.2 SiNM-BasedTactileSensor 170 7.2.1 OverviewofTactileSensingTechnologies 170 7.2.2 DesignandFabricationofSiNM-BasedTactileSensor 172 7.2.3 PerspectivesandOutlookofSi-NM-BasedTactileSensor 181 7.3 SiNM-BasedFlexibleSensorforBiologicalSignalMonitoringand MotionSensingofHumans 182 7.3.1 Overview 182 7.3.2 EpidermalandWearableDevices 183 7.3.3 ImplantableDevices 190 7.3.4 BiodegradableandTransientDevices 193 7.3.5 PerspectivesandOutlookofWearable,Implantable,andTransient Electronics 195 7.4 Summary 197 Acknowledgments 199 References 199 8 FlexibleandTransparentSolarCellsUsingSiNanomembranes 203 JongseungYoon 8.1 Introduction 203 8.2 FabricationofUltrathinMonocrystallineSiliconSolarCells 204 8.3 TransferPrintingofUltrathinSiliconSolarCells 208 8.4 PhotovoltaicPerformanceofPrintedSiliconMicrocells 211 8.5 UnconventionalModuleDesignsofUltrathinSilicon Microcells 212 8.5.1 ModuleswithHighDegreesofMechanicalFlexibility 212 8.5.2 ModuleswithDefinableOpticalTransparency 215 8.5.3 ModuleswithMicroscaleConcentratorOptics 216 8.5.4 ModuleswithaCompactSize,HighVoltageOutputs 217 8.6 PhotonManagementforUltrathinSiliconMicrocells 219 8.6.1 MicrocellswithHexagonallyPeriodicNanoposts 219 8.6.2 MicrocellswithDensity-GradedSurfaceNanostructures 232 8.7 Conclusion 233 Acknowledgment 237 References 237