Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1672 Signal Processing Tools for Electron Microscopy JAKOB SPIEGELBERG ACTA UNIVERSITATIS ISSN 1651-6214 UPSALIENSIS ISBN 978-91-513-0345-1 UPPSALA urn:nbn:se:uu:diva-348264 2018 Dissertation presented at Uppsala University to be publicly examined in Å2001, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, Tuesday, 12 June 2018 at 09:00 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Johan Verbeeck (EMAT, University of Antwerp). Abstract Spiegelberg, J. 2018. Signal Processing Tools for Electron Microscopy. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1672. 60 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0345-1. The detection of weak signals in noisy data is a problem which occurs across various disciplines. Here, the signal of interest is the spectral signature of the electron magnetic chiral dichroism (EMCD) effect. In principle, EMCD allows for the measurement of local magnetic structures in the electron microscope, its spatial resolution, versatility and low hardware requirements giving it an eminent position among competing measurement techniques. However, experimental shortcomings as well as intrinsically low signal to noise ratio render its measurement challenging to the present day. This thesis explores how posterior data processing may aid the analysis of various data from the electron microscope. Following a brief introduction to different signals arising in the microscope and a yet briefer survey of the state of the art of EMCD measurements, noise removal strategies are presented. Afterwards, gears are shifted to discuss the separation of mixed signals into their physically meaningful source components based on their assumed mathematical characteristics, so called blind source separation (BSS). A data processing workflow for detecting weak signals in noisy spectra is derived from these considerations, ultimately culminating in several demonstrations of the extraction of EMCD signals. While the focus of the thesis does lie on data processing strategies for EMCD detection, the approaches presented here are similarly applicable in other situations. Related topics such as the general analysis of hyperspectral images using BSS methods or the fast analysis of large data sets are also discussed. Jakob Spiegelberg, Department of Physics and Astronomy, Materials Theory, Box 516, Uppsala University, SE-751 20 Uppsala, Sweden. © Jakob Spiegelberg 2018 ISSN 1651-6214 ISBN 978-91-513-0345-1 urn:nbn:se:uu:diva-348264 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-348264) ThereisaT-rexinthisthesis! List of papers Thisthesisisbasedonthefollowingpapers,whicharereferredtointhetext bytheirRomannumerals. I Detectingmagneticorderingwithatomicsizeelectronprobes J.C.Idrobo,J.Rusz,J.Spiegelberg,M.A.McGuire,C.T.Symons,R. R.Vatsavai,C.CantoniandA.R.Lupini Adv. Struct. Chem. Imag. 2,5(2016). II Magneticmeasurementswithatomic-planeresolution J.Rusz,S.Muto,J.Spiegelberg,R.Adam,K.Tatsumi,D.E.Bürgler, P.M.OppeneerandC.M.Schneider NatureCommunications7,12672(2016). III CanweusePCAtodetectsmallsignalsinnoisydata? J.SpiegelbergandJ.Rusz Ultramicroscopy172,40-46(2017). IV AnalysisofElectronEnergyLossSpectroscopyDatausing GeometricExtractionMethods J.Spiegelberg,J.Rusz,T.ThersleffandK.Pelckmans Ultramicroscopy174,14-26(2017). V TensorDecompositionsfortheAnalysisofAtomicResolution ElectronEnergyLossSpectra J.Spiegelberg,J.RuszandK.Pelckmans Ultramicroscopy175,36-45(2017). VI Localizationofmagneticcirculardichroicspectraintransmission electronmicroscopyexperimentswithatomicplaneresolution J.Rusz,J.Spiegelberg,S.Muto,T.Thersleff,K.Tatsumi,M.Ohtsuka, K.LeiferandP.M.Oppeneer Phys. Rev. B95,174412(2017). VII Towardssub-nanometerreal-spaceobservationofspinandorbital magnetismattheFe/MgOinterface T.Thersleff,S.Muto,M.Werwin´ski,J.Spiegelberg,Y.Kvashnin,B. Hjörvarsson,O.Eriksson,J.RuszandK.Leifer, ScientificReports7,44802(2017). VIII Theusageofdatacompressionforthebackgroundestimationof electronenergylossspectra J.Spiegelberg,J.Rusz,K.LeiferandT.Thersleff Ultramicroscopy181,117-122(2017). IX Fullynon-localinelasticscatteringcomputationsforspetroscopical TEMmethods J.Rusz,A.Lubk,J.SpiegelbergandD.Tyutyunnikov Phys. Rev. B96,245121(2017). X UnmixingHyperspectralDatabyusingSignalSubspaceSampling J.Spiegelberg,S.Muto,M.Ohtsuka,K.PelckmansandJ.Rusz Ultramicroscopy182,205-211(2017). XI Locallowrankdenoisingforenhancedatomicresolutionimaging J.Spiegelberg,J.C.Idrobo,A.Herklotz,T.Z.Ward,W.ZhouandJ. Rusz Ultramicroscopy187,34-42(2018). XII OntheusageofICAfortheanalysisofEELSandEDXdata J.Spiegelberg Ultramicroscopy,submitted. XIII LowdoseSTEMimagingviainpaintingofregularlyundersampled images J.Spiegelberg,J.Hachtel,J.C.IdroboandJ.Rusz ScientificReports,submitted. XIV Realspacemappingofmagnetismatatomicresolutionusing APR-EMCD J.Spiegelberg,S.Muto,M.Ohtsuka,andJ.Rusz Microscopy,submitted. XV Blindidentificationofmagneticsignalsinelectronmagneticchiral dichroismusingindependentcomponentanalysis J.Spiegelberg,D.Song,R.E.Dunin-Borkowski,J.Zhu,andJ.Rusz Ultramicroscopy,submitted. XVI Datafusionapproachesforelectronmicroscopy J.Spiegelberg,Y.Yamamoto,S.Muto,M.Ohtsuka,andJ.Rusz Ultramicroscopy,submitted. Papersthatwere(co-)authoredbyme,butarenotincludedinthis thesis: XVII Validityoftherotatingwaveapproximationinnonadiabatic holonomicquantumcomputation J.SpiegelbergandE.Sjökvist Phys. Rev. A88,054301(2013). XVIII Amultislicetheoryofelectronscatteringincrystalsincluding backscatteringandinelasticeffects J.SpiegelbergandJ.Rusz Ultramicroscopy159,11-18(2015). Reprintsweremadewithpermissionfromthepublishers. Contents 1 Introduction 11 ................................................................................................ 2 Signalsintheelectronmicroscope 13 ........................................................... 2.1 Thespectraltrinity 14 ......................................................................... 2.1.1 Cathodoluminescence 14 ..................................................... 2.1.2 EnergydispersiveX-rayspectroscopy 14 ........................... 2.1.3 Electronenergylossspectroscopy 15 .................................. 2.2 Theholygrail 17 ................................................................................. 2.2.1 BrieftheoreticalbackgroundofEMCD 17 ......................... 2.2.2 Surveyofexperimentsettings 19 ......................................... 2.3 Apocryphalsignals 21 ......................................................................... 3 Aselectionofdataprocessingtoolsforamicroscopist 22 .......................... 3.1 Noiseremovalapproaches 22 ............................................................. 3.1.1 PrincipalComponentAnalysis 23 ....................................... 3.1.2 Imagedenoising 25 ............................................................... 3.2 MatrixfactorizationsI-ICAandNMF 25 ........................................ 3.2.1 IndependentComponentAnalysis 26 .................................. 3.2.2 Non-negativeMatrixFactorization 27 ................................. 3.3 MatrixfactorizationsII-usinggeometry 28 ..................................... 3.3.1 Findingpurepixels 28 .......................................................... 3.3.2 Estimatingpurepixels 29 ..................................................... 3.4 MatrixfactorizationsIII-beyondmatrices 30 .................................. 3.4.1 Tensorfactorizations 31 ....................................................... 3.4.2 Coupledfactorizations 34 .................................................... 4 Lookingfortheholygrail 36 ......................................................................... 4.1 Findingsignalsinnoisyhyperspectralimages 36 ............................. 4.1.1 DetectingsignalswithPCA 36 ............................................ 4.1.2 MappingsignalswithMLSVDandLLR 38 ....................... 4.2 LearninghowtofindEMCD 39 ......................................................... 4.2.1 GeometricblindsourceseparationforEMCD 40 .............. 4.2.2 EMCDandICA 41 ............................................................... 4.2.3 ExtractingEMCDstraightfromthetensor 41 .................... 4.3 FindingEMCD 42 ............................................................................... 4.3.1 EMCDwithabberatedprobes 42 ........................................ 4.3.2 APR-EMCD 42 ..................................................................... 4.3.3 EFTEM-EMCD 43 ............................................................... 4.3.4 DD-EMCD 43 ....................................................................... 4.4 WhathasbeenlearnedfromthequestforEMCD 43 ....................... 4.4.1 Afasterwayoffindingpurepixels 44 ................................ 4.4.2 Analysisofcompressedsignals 45 ...................................... 4.4.3 Exploringthesignalsubspace 45 ........................................ 4.4.4 Unmixinghyperspectraldatabyexploitingspatial periodicity 46 ........................................................................ 4.4.5 Inpaintinginsteadofdenoising 47 ....................................... 5 Conclusions 50 ................................................................................................ 6 Sammanfattningpåsvenska 51 ...................................................................... 7 Acknowledgements 52 ................................................................................... References 53 ........................................................................................................
Description: