ebook img

Siegel Modular Forms: A Classical and Representation-Theoretic Approach PDF

142 Pages·2019·2.093 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Siegel Modular Forms: A Classical and Representation-Theoretic Approach

Lecture Notes in Mathematics 2240 Ameya Pitale Siegel Modular Forms A Classical and Representation-Theoretic Approach Lecture Notes in Mathematics Volume 2240 Editor-in-Chiefs Jean-MichelMorel,CMLA,ÉcoleNormaleSupérieuredeCachan,Cachan,France Bernard Teissier, Equipe Géométrie et Dynamique, Institut Mathématique de Jussieu-Paris Rive Gauche, Paris, France Advisory Editor Michel Brion, Institut Fourier, Université Grenoble Alpes Institut Fourier, Grenoble, France Camillo De Lellis, Institute for Advanced Study, Princeton, NJ, USA AlessioFigalli,DepartmentofMathematics,SwissFederalInstituteofTechnology, Zurich, Switzerland Davar Khoshnevisan, Department of Mathematics, The University of Utah, Salt Lake City, UT, USA Ioannis Kontoyiannis, Department of Engineering, University of Cambridge, Cambridge, UK GáborLugosi,DepartmentofEconomicsandBusiness,UniversitatPompeuFabra, Barcelona, Spain MarkPodolskij,DepartmentofMathematics,AarhusUniversity,Aarhus,Denmark Sylvia Serfaty, Courant Institute of Mathematics, New York University Courant Institute of Mathematics, New York, NY, USA Anna Wienhard, Mathematisches Institut, Universität Heidelberg, Heidelberg, Germany More information about this series at http://www.springer.com/series/304 Ameya Pitale Siegel Modular Forms A Classical and Representation-Theoretic Approach 123 Ameya Pitale Mathematics University of Oklahoma Norman, OK, USA ISSN 0075-8434 ISSN 1617-9692 (electronic) Lecture Notesin Mathematics ISBN978-3-030-15674-9 ISBN978-3-030-15675-6 (eBook) https://doi.org/10.1007/978-3-030-15675-6 LibraryofCongressControlNumber:2019934367 MathematicsSubjectClassification(2010): 11-XX,11-02,11Fxx,20-XX,20Cxx,20Kxx ©SpringerNatureSwitzerlandAG2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Contents 1 Introduction to Siegel Modular Forms . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 The Symplectic Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Siegel Upper Half-Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Siegel Modular Forms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1 Theta Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.2 Eisenstein Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.3 Saito–Kurokawa Lifts. . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Congruence Subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 Congruence Subgroups in Genus 2 . . . . . . . . . . . . . . . . 12 2.2.2 Siegel Modular Forms with Level. . . . . . . . . . . . . . . . . 13 3 Hecke Theory and L-Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1 The Hecke Algebra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Action of the Hecke Algebra on Siegel Modular Forms . . . . . . 17 3.3 Relation Between Fourier Coefficients and Hecke Eigenvalues for Genus 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.4 L-Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.4.1 L-Function for Saito–Kurokawa Lifts . . . . . . . . . . . . . . 22 4 Nonvanishing of Fourier Coefficients and Applications. . . . . . . . . . 23 4.1 Generalized Ramanujan Conjecture . . . . . . . . . . . . . . . . . . . . . 23 4.2 Nonvanishing of Fourier Coefficients . . . . . . . . . . . . . . . . . . . . 24 4.3 Application of the Nonvanishing Result. . . . . . . . . . . . . . . . . . 27 4.4 Böcherer’s Conjecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5 Applications of Properties of L-Functions. . . . . . . . . . . . . . . . . . . . 31 5.1 Determining Cusp Forms by Size of Fourier Coefficients . . . . . 31 5.2 Sign Changes of Hecke Eigenvalues . . . . . . . . . . . . . . . . . . . . 33 5.3 Sign Changes of Fourier Coefficients . . . . . . . . . . . . . . . . . . . . 35 v vi Contents 6 Cuspidal Automorphic Representations Corresponding to Siegel Modular Forms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6.1 Classical to Adelic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6.2 Hecke Equivariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 6.3 Satake Isomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 6.4 Spherical Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.5 The Representation Associated to a Siegel Cusp Form . . . . . . . 47 7 Local Representation Theory of GSp4 (Qp). . . . . . . . . . . . . . . . . . . 49 7.1 Local Non-archimedean Representations for GSp . . . . . . . . . . 49 4 7.2 Generic Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 7.3 Iwahori-Spherical Representations . . . . . . . . . . . . . . . . . . . . . . 54 7.4 Paramodular Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 8 Bessel Models and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 8.1 The L-Function Lðs;…F (cid:2)¿Þ . . . . . . . . . . . . . . . . . . . . . . . . . . 63 8.2 Definition of Global Bessel Model. . . . . . . . . . . . . . . . . . . . . . 66 8.3 Local Bessel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 8.4 Explicit Formulas for Distinguished Vectors in Local Bessel Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 9 Analytic and Arithmetic Properties of GSp (cid:2) GL 4 2 L-Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 9.1 Functional Equation and Analytic Continuation . . . . . . . . . . . . 75 9.2 Transfer to GL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4 9.3 Other Analytic Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 77 9.4 Arithmetic Applications of the Integral Representation of Lðs;…F (cid:2)¿Þ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 10 Integral Representation of the Standard L-Function. . . . . . . . . . . . 83 10.1 The zeta integral. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 10.2 The Basic Identity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 10.3 The Local Integral Computation . . . . . . . . . . . . . . . . . . . . . . . 86 10.4 Global Integral Representation. . . . . . . . . . . . . . . . . . . . . . . . . 88 10.5 Classical Reformulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 10.6 Arithmetic Results in Genus 2. . . . . . . . . . . . . . . . . . . . . . . . . 89 Appendix A: GL Notes: Classical Modular Forms.... .... ..... .... 93 2 Appendix B: The p-Adic Fields Qp and the Ring of Adeles A of Q .... 97 Appendix C: GL Notes: Representation Theory.. .... .... ..... .... 99 2 Appendix D: Solutions to Exercises. .... .... .... .... .... ..... .... 103 References.... .... .... .... ..... .... .... .... .... .... ..... .... 131 Index .... .... .... .... .... ..... .... .... .... .... .... ..... .... 137 Introduction The theory of modular forms is an important topic of research in number theory. The modular forms are the centerpiece of several recent accomplishments such as the proof of the Shimura–Taniyama–Weil conjecture due to Andrew Wiles and others,whichledtotheresolutionofFermat’sLastTheorem.Siegelmodularforms arethehigherdimensionalanaloguesofmodularformsandarethesubjectofthese lecturenotes.Siegelmodularformshaveseentremendoussuccessrecentlyinboth analytic and arithmetic aspects, with results toward Langlands functoriality and Deligne’s conjectures. These lecture notes are based on my workshop on Siegel modular forms at IISER, Pune, India from August 8 to 18, 2017. The target audience for the workshop, andfor thesenotes,aregraduatestudents andyoungresearchers. These notes could also be used by senior researchers as reference material. The main objective of the workshop was to introduce classical and representa- tiontheoretictechniquesinmodularformsandtoexplicatetheinterconnectionsvia current research and open problems. I believe that the classical and representation theoreticmethodsareatwo-waystreetanditisabsolutelyessential for researchers to gain expertise in going from one side to the other and back. For this purpose, I decided to focus the workshop, and these lecture notes, on Siegel modular forms. These are higher dimensional analogues of elliptic modular forms and there is a long history of active research on this topic. The main advantage is that one can approach Siegel modular forms from a purely classical pointofviewasholomorphicfunctionsontheSiegelupperhalf-space.Inaddition, these can be studied in the context of local and global representation theory of the symplectic group. ThesubjectofSiegelmodularformsisvastanditisimpossibletocoverallofit in a 2-week workshop. This is my disclaimer that these notes are not comprehen- sive. I have tried to give a detailed description of the basics of the classical theory and representation theory of Siegel modular forms. But beyond the basics, my emphasisismore onhow tousetheconceptstosolveseveralinterestingproblems and to give an indication about the current open questions in the subject. I have triedtoprovidereferencesforanythingthatisnotprovedinthelecturenotessothat vii viii Introduction thereadercanaccessdetails.Ihopethatthiswillopencertainlockeddoorsforthe readers,andgetthemexcitedenoughtopursuelearningorresearchingontheseand related topics. Some of the topics that have been omitted are the Galois representations asso- ciated to Siegel modular forms, the paramodular conjecture, and vector-valued Siegelmodularforms.ThefirsttwoomissionsarebychoicesinceIdonotworkon problemsrelatedtothem,whilethelastoneisjusttosimplifythingsbyrestricting to scalar-valued Siegel modular forms. Each of these aspects of Siegel modular forms could be one or more chapters by themselves. Instead, I am just going to provide some references to get the interested readers started on them. For Galois representationslookat[57]and[105],fortheparamodularconjecturesee[16]and for vector-valued Siegel modular forms refer to [71]. There are several good texts which explain details of the classical theory of Siegel modular forms (see [4, 28, 46, 59]) and some research articles that provide detailsoftherepresentationtheoryofthesymplecticgroup([6,81]).Thereisagap in the literature when it comes to a good text or reference article giving the nec- essaryin-depthinformationonthetwoapproachestoSiegelmodularformsaswell as the interconnections between the two. I hope that these notes will fill that gap. AnimportantfeatureofthenotesisthatIhavetriedtoprovideseveralexercises. Theseplayadualrole.Theyallowmetointroducecertainresultswithouthavingto gothroughtheirproofs.Butmoreimportantly,anyonewantingtoreallyunderstand the material can only do so if they get their hands dirty doing these exercises. For the convenience of the reader, I have provided solutions (or hints) for all the exercises in an appendix. In an ideal situation, the reader will already be familiar with the GLð2Þ theory. ThiswillhelpinrealizinghowthetheoryandmethodsforSiegelmodularformsare often a generalization of the elliptic modular forms theory. Nevertheless, I have includedthreeappendicesrecallingtheclassicalconceptsandrepresentationtheory for GLð2Þ and basics of p-adic numbers and the ring of adeles. Thenotesareorganizedasfollows.Chapters1–3introducebasicinformationon theclassical theoryofSiegel modularforms. Chapters4 and5introduceadvanced topics,openconjecturesandrecentresultsthatusethetechniquesintroducedinthe preceding Chapters. Chapter 6 is the transition from the classical to the represen- tation theoretic. Chapter 7 provides much of the basic local representation theory. Chapters 8–10 present current research and introduce the various techniques and concepts required to understand them. Acknowledgements:IwouldliketothankeveryoneatIISER,Pune,andespecially BaskarBalasubramanyam,fortheirhospitalityandseamlessorganization.Iamalso grateful to the participants of the workshop who spent close to 30 hours with me over a period of 10 days, and countless many hours working on the exercises by themselves. Their feedback was crucial in correcting mistakes and typos in earlier versionsofthenotes.Iwouldalsoliketomentionthattheworkshopwaspartofthe Global Initiative of Academic Networks (GIAN) proposal of the government of India. Introduction ix IamthankfulforallthehelpandguidanceprovidedbyRalfSchmidtinmaking sure that the lecture notes are accurate. I am also grateful to the referees whose comments and suggestions were invaluable. Finally, I want to thank my family—Swapna, Aayush, and Samay—for the support and encouragement that makes all of it possible. These lecture notes are dedicated to them.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.