ebook img

Shock wave data for minerals PDF

42 Pages·1995·2.331 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Shock wave data for minerals

Shock Wave Data for Minerals Thomas J. Ahrens and Mary L. Johnson 1. INTRODUCTION [ 13,141 is in the mechanics of both the continued bombardment and hence cratering on planetary objects Shock compression of the materials of planetary through geologict ime [ 1701,a s well as the effects of giant interiors yields data, which upon comparison with impacts on the Earth [183,185]. Finally, recovery and density-pressurea nd density-sound velocity profiles of characterization of shock-compressed materials have both terrestrial planetary mantles and cores [4,5,94], as provided important insights into the nature of shock well as density profiles for the interior of the major deformation mechanisms and, in some cases, provided planets [ 1481, constrain internal composition and physical data on the nature of either shock-inducedp hase temperature. Other important applicationso f shock wave changes or phase changes which occur upon isentropic data and related properties are found in the impact releasef rom the high-pressures hock state (e.g., melting) mechanicso f terrestrial planets and the solid satelliteso f [193,194]. the terrestrial and major planets. Significant processes As indicated for the data summary of Table 1, a very which can, or have been, studied using shock wave data large data set exists describing the Hugoniot equation of include: (1) the formation of planetary metallic cores state of minerals. Whereas some earlier summariesh ave during accretion [ 169,192], and (2) the production of a provided raw shock data [47,121,213], the present shock-melted “magma ocean” and concurrent impact summary provides fits to shock wave data. Earlier volatilization versusr etention of volatiles during accretion summariesp roviding fits to data are given by Al’tshuler et [l]. Also of interest are the shock-induced chemical al. [24] and Trunin [203]. reactions between meteoritic components( e.g. H20 and Hugoniot data specify the locus of pressure-density Fe: [ 1111). The formation of primitive atmospheres,f or (or specific volume) states which can be achieved by a example,c ontaining a large fraction of H20 and CO2 is mineral from some initial state with a specified initial also addressable using shock wave and other density. An analogous summary for rocks, usually thermodynamic data for volatile-bearing minerals (e.g. describeda s a mixture of minerals are given in Chapter 3- [110,112]). A related application of both shock 4. compression and isentropic release data for minerals Three pressure units are commonly in use in the shock wave literature: kilobar (kbar), gigapascal( GPa), and megabar (Mbar). These are equal to 109, lOlo, and T. J. Ahrens and M. L. Johnson, Seismological Laboratory, 1012 dyne/cm2 respectively, or 108, 109, and lo1 1 252-21. California Institute of Technology, Pasadena, CA pascalsi n SI uniis. 91125 2. SHOCK WAVE EQUATION OF STATE Present Address: M. L. Johnson, Gemological Institute of America, 1639 Stewart Street, Santa Monica, CA 90404 The propagation of a shock wave from a detonating Mineral Physics and Crystallography explosive or the shock wave induced upon impact of a A Handbook of Physical Constants flyer plate accelerated,v ia explosiveso r with a gun, result AGU Reference Shelf 2 Copyright 1995 by the American Geophysical Union. 143 TABLE 1. Shock Wave Equation of State of Minerals and Related Materials of the Solar System E Sample error lower upper References / E Mineral Formula Density Co ACo S error VP UP Phase* NO. of Temp. Refs. 8 (Mg/m3) (kmhec) (kmhec) AS (kndsec) (kmhec) Data x s Gases: AirC (mixture) 0.884 2.28 __ 1.20 __ 4.317 5.788 2 4.25 __ 0.85 -_ 5.788 7.379 4 [1471 Nitrogen plus 1: 1 N2+02 0.945 1.83 0.11 1.26 0.03 2.235 3.785 2 Cl791 OxygenC Nitric Oxidee NO 1.263 3.76 0.06 0.98 0.02 2.01 3.245 2 7 [I791 Ammonia’ NH3 0.715 2.45 0.19 1.34 0.04 1.01 7.566 2 12 [83,121,140]/ u591 Argon k Ar 0.0013 0.71 0.10 1.041 0.018 1.73 7.81 2 25 [58,71,84] Argonf Ar 0.919 1.04 0.06 1.36 0.02 1.59 4.04 2 6 [2141 Argon’ Ar 1.026 1.1 0.2 1.45 0.07 1.42 4.10 2 7 [2131 ArgonC Ar 1.401 1.01 0.10 1.79 0.08 0.301 1.35 2 9 1.28 0.06 1.58 0.02 1.32 3.758 3 24 3.04 0.14 1.09 0.03 3.65 6.451 4 10 [80,121,146,180, 2141 / [80,221] ArgonC Ar 1.65 0.88 0.15 2.00 0.11 0.56 1.85 2 8 1.9 0.3 1.46 0.10 1.85 3.60 3 7 2.5 0.3 1.29 0.07 3.60 4.60 4 3 [64,109,121, 1891 Carbon co2 1.173 1.54 0.09 1.44 0.03 1.585 3.765 2 16 Dioxide’ 3.3 0.4 1.01 0.07 4.549 6.264 4 3 [147,178] Carbon CO? 1.541 1.99 0.08 1.56 0.03 1.03 3.68 2 Dioxideh 3.27 -_ 1.21 __ 3.68 4.79 4 [233] Carbon MonoxideC co 0.807 1.54 __ 1.40 __ 1.692 2.471 2 2.59 0.04 0.974 0.010 2.471 5.608 3 1.3 0.3 1.21 0.04 5.608 7.92 4 t1501 TABLE 1. Shock Wave Equation of State of Minerals and Related Materials of the Solar System (continued) Sample error lower upper References / Mineral Formula Density Co ACo S error UP UP Phase* NO. of Temp. Refs. (Mglm3) (km/set) Udsec) AS (kmhec) (kmhec) Data Deuteriumb D2 0.167 1.7 0.6 1.29 0.12 3.678 6.263 2 8 2.4 0.3 1.17 0.03 6.263 9.014 3 4 [63,1W Heliuma He 0.123 0.674 0.011 1.366 0.002 2.47 9.39 2 3 [ 1451 Hydrogenb H2 0.071 1.128 0.006 1.829 0.013 0 1.105 1 5 1.49 0.08 1.51 0.03 1.105 3.080 2 3 2.38 0.19 1.23 0.03 3.080 9.962 4 10 [63,144,215] Hydrogena H2 0.089 1.80 0.12 1.89 0.09 0.801 1.525 2 4 [lo91 Methaned W 0.423 2.19 -- 1.35 __ 2.222 3.568 2 2 2.87 0.09 1.166 0.014 3.568 8.341 4 4 u501 Nitrogen k N2 0.0013 0.38 0.02 1.038 0.004 3.80 8.99 2 10 [571 Nitrogen c N2 0.811 0.94 0.10 1.83 0.09 0 1.57 1 9 1.14 0.18 1.59 0.08 1.51 3.26 2 15 2.1 0.3 1.26 0.06 3.26 5.23 3 24 4.0 0.2 0.88 0.04 5.2 8.63 4 12 [60,61,62,121, 146,149,179, 213,233] I [ 149,160,221] OxygenC 1.202 1.60 0.16 1.45 0.06 2.06 2.98 2 9 2.35 0.10 1.22 0.02 2.91 6.766 4 16 [121,146,2231 Xenonk Xe 0.012 0.2 0.4 1.15 0.13 1.58 3.33 1 1.5 0.5 0.74 0.13 3.13 4.11 3 0.04 1.14 0.05 4.11 7.69 2 1.8 i:; 0.93 0.05 7.69 11.1 4 [71,81,216] Xenong Xe 3.006 1.33 0.16 1.33 0.09 1.185 2.51 1 1.7 1.1 2.51 2.7 3 1.49 0.15 1.21 d.05 2.7 3.82 2 1.94 0.14 1.09 0.03 3.82 5.502 4 [151,212,213] /[161,212] TABLE 1. Shock Wave Equation of State of Minerals and Related Materials of the Solar System (continued) E Sample error lower upper References / 2 Mineral Formula Density Co ACo S error UP UP Phase* NO. of Temp. Refs. is @Q/m3) (kmhec) (krrdsec) AS (krdsec) (kndsec) Data ?? e Elements: Antimony Sb 6.695 3.2 -0.8 0 0.311 1 2 2.62 0.02 0.95 0.03 0.311 0.997 2 6 2.03 0.07 1.61 0.04 0.989 2.699 4 13 [121,126,217, 2271 Bismuth Bi 9.817 2.17 0.06 -1.0 0.5 0 0.32 1 17 1.08 0.06 2.20 0.07 0.32 1.183 2 30 2.01 0.04 1.358 0.019 1.183 4.45 4 21 [30,68,89,113, 121,131,166, 217,226] Carbon: Graphite 0.4665 0.4 0.3 1.14 0.06 2.114 6.147 2 6 [I211 Graphite 1. ooo 0.79 0.12 1.30 0.03 0.772 5.617 2 36 [121] Graphite 1.611 1.75 0.09 I .42 0105 0.911 4.22 2 60 [82,121,133,213, 217) Graphite 1.794 2.04 0.14 1.66 0.08 0 2.563 2 30 4.2 0.5 0.71 0.18 2.372 3.08 3 19 1.9 0.3 1.49 0.07 3.069 5.42 4 41 [82,121,133,213, 2171 Graphite C 2.205 3.11 0.07 4.7 0.2 0.012 0.41 1 12 4.19 0.05 1.83 0.04 0.404 1.9 2 77 7.5 0.3 0.21 0.11 1.89 3.316 3 24 3.92 0.06 1.331 0.008 3.119 28.38 4 22 [58,65,82,121, 126,133,162, 2171 Diamond 1.90 1.2 0.2 1.73 0.05 2 6.5 2 5 u531 Diamond 3.191 7.74 0.05 1.456 0.019 1.364 3.133 2 3 w11 DiamondCl 3.51 12.16 _- 1 _- 2 8.5 2 -- 11531 Glassy Carbon 1.507 2.72 0.11 1.12 0.03 0 5.8 2 45 [82,121,1811 TABLE 1. Shock Wave Equation of State of Minerals and Related Materials of the Solar System (continued) Sample error lower upper References / Mineral Formula Density Co ACo S error VP VP Phase* NO. of Temp. Refs. (Mg/m3) (kmhec) (kmhec) AS (kmhec) (kmhec) Data Carbon Foam C 0.435 0.85 0.09 0.88 0.05 0.815 2.301 2 -0.35 0.12 1.34 0.02 2.119 6.734 4 ii 11211 Carbon Fibers C 1.519 1.18 0.09 1.73 0.06 0.924 2.361 2 5 2.52 0.10 1.14 0.03 2.361 5.041 4 15 WI Cobalt co 2.594 -0.15 0.06 1.602 0.017 0.651 6.39 2 11 W-Y Cobalt co 4.15 0.05 0.03 1.863 0.014 0.615 3.63 2 8 PO93 Cobalt co 5.533 0.42 0.04 2.11 0.02 0.293 2.89 2 10 1.38 0.08 1.76 0.02 2.89 5.2 4 4 PO91 Cobalt co 8.82 4.53 -- 1.77 -_ 0 0.482 1 2 4.77 0.02 1.285 0.014 0.482 2.297 2 17 3.98 0.13 1.66 0.04 2.289 4.32 4 4 [24,121,126,131, 166,217,226] Copper cu 1.909 0.03 0.08 1.361 0.009 0.661 26.1 2 27 [24,209] Copper cu 2.887 0.37 0.08 1.406 0.015 1.15 17.25 2 28 [24,121,209] Copper cu 3.57 0.03 0.02 1.675 0.008 0.63 3.96 2 6 [2091 Copper cu 4.475 1.35 __ -2.02 0 0.315 1 2 0.15 0.05 1.87 6.03 0.315 2.944 2 14 1.9 0.3 1.33 0.05 2.944 9.56 4 8 [56,121,134,136, 204,209] Copper cu 6.144 2.73 0.11 -1.7 0.8 0 0.534 1 14 0.87 0.07 1.97 0.04 0.534 3.365 2 39 3.2 0.4 1.27 0.07 3.327 8.77 4 5 [56,121,128,134, 136,172,204, 209,217] Copper cu 7.315 3.15 0.14 -0.4 0.2 0 0.701 1 3 1.73 0.07 1.94 0.04 0.669 3.063 2 18 [56,121,126,128, 134,136l TABLE 1. Shock Wave Equation of State of Minerals and Related Materials of the Solar System (continued) ii Sample error lower upper References / !z Mineral Formula Density Cc ACo S error UP UP Phase* NO. of Temp. Refs. (Mg/m3) (kmhec) (kmhec) AS (kmhec) (kndsec) Data 8 $ Copper cu 7.90 3.39 0.04 -0.06 0.08 0 0.646 1 3 s 2.29 0.06 1.90 0.03 0.627 2.969 2 18 [56,121,127,134, 1361 z Copper cu 8.931 3.982 0.014 1.460 0.006 0 12.1 2 315 [22,24,25,28,29, 30,90,121,126, 131,134,136, K 139,141,143, z 166,172,184. 205,213,217, F v1 2261 Germanium Ge 5.328 5.93 0.19 -1.8 0.2 0.0775 1.226 1 17 1.98 0.10 1.63 0.04 1.226 3.188 2 46 [79,121,126,136, 2131 Gold Au 19.263 2.95 0.03 1.81 0.07 0 0.71 1 5 3.08 0.04 1.546 0.019 0.71 3.52 2 11 [24,100,121,131, 166,217,2261 Indium In 7.281 2.54 0.05 1.49 0.03 0.56 2.932 2 15 5.48 -- 0.47 -- 2.932 4.87 4 2 [24,121,166,217, 2261 Iodine I2 4.902 1.62 0.03 1.25 0.04 0.49 0.9 1 5 1.34 0.04 1.59 0.02 0.9 2.66 2 38 2.4 0.3 1.17 0.08 2.65 4.73 4 13 [ 125,213] Iridium Ir 22.54 3.81 0.05 1.76 0.10 0.933 1 6 4.37 0.07 1.15 0.05 i.933 1.629 3 4 3.36 0.09 1.76 0.04 1.629 3.09 4 3 [24,121,136] Iron Fe 2.633 -0.04 0.08 1.63 0.04 0.646 3.27 2 6 1.8 0.3 1.28 0.03 3.27 21.54 4 8 [204,209] Iron Fe 3.359 0.23 0.09 1.67 0.04 0.644 5.52 2 24 [121,134,136, 2041 TABLE 1. Shock Wave Equation of State of Minerals and Related Materials of the Solar System (continued) Sample error lower upper References I Mineral Formula Density Co ACo S error UP DP Phase* NO. of Temp. Refs. (Mg/m3) (kmhec) (kmlsec) AS (kmhec) (kmhec) Data Iron Fe 4.547 0.57 0.09 1.88 0.04 0.591 3.59 2 33 2.4 0.3 1.38 0.05 3.58 9.1 4 6 [121,134,136, 204,209] Iron Fe 5.783 3.15 0.10 -1.7 0.6 0 0.537 1 12 1.17 0.03 1.98 0.04 0.537 0.941 2 4 0.01 0.09 3.22 0.08 0.941 1.249 3 3 2.25 0.09 1.61 0.03 1.565 4.95 4 IO [31,121,134,136, 172,213] Iron Fe 6.972 4.1 -- -1.5 0 0.569 1 2 2.4 0.2 1.3 0.3 0.569 0.85 2 5 1.2 0.3 2.8 0.2 0.85 1.453 3 4 2.77 0.08 1.71 0.04 1.427 3.131 4 15 [121,134,136] Iron Fe 7.853 5.85 0.12 -1.7 0.8 0 0.573 1 16 3.48 0.05 1.91 0.05 0.763 1.433 2 42 3.94 0.03 1.584 0.013 1.413 4.55 4a 97 5.36 0.07 1.302 0.008 4.50 21.73 4b 18 [24,25,29,30,31, 33,108,121,126, 131,132,134, 136,138,162, 166,172,202, 206,213,217, 226]/[6,20,43, 4.41 Iron-Nickel (Fe, W (see Taenite) Iron-Silicon FelTSi 7.641 3.87 0.04 1.67 0.02 0.984 3.568 2 37 [42,121] Iron-Silicon Fe7Si 7.49 4.01 0.06 1.71 0.04 0.975 2.291 2 3 Wll Iron-Silicon Fe3Si (see Suessite) TABLE 1. Shock Wave Equation of State of Minerals and Related Materials of the Solar System (continued) Sample error lower upper References I Mineral Formula Density Co ACo S error UP UP Phase* NO. of Temp. Refs. (Mg/m3) (km/set) (km/set) AS (ludsec) (kmkec) Data Lead Pb 4.71 0.31 __ 1.42 __ 0.607 1.016 2 2 0.17 0.06 1.59 0.03 1.016 2.83 3 5 0.78 0.12 1.37 0.03 2.83 5.77 4 3 [209] Lead Pb 6.79 0.555 0.016 1.726 0.015 0.55 1.44 2 4 0.94 0.05 1.462 0.018 1.44 3.24 3 3 1.36 -- 1.33 __ 3.24 4.85 4 2 ~2091 Lead Pb 8.40 0.71 0.07 2.10 0.14 0.26 0.73 2 3 1.15 0.08 1.59 0.05 0.73 2.18 3 6 1.84 0.05 1.306 0.016 2.18 4.91 4 5 m91 Lead Pb 9.51 1.20 0.07 1.87 0.08 0.46 1.16 2 3 1.58 0.05 1.51 0.02 1.16 2.73 3 3 [2091 Lead Pb 11.345 1.992 0.014 1.511 0.012 0 2.36 2 93 2.70 0.04 1.213 0.006 2.335 19.12 4 42 [25,28,30,33, 121,131,141, 163,166,206, 213,217,226] Mercury Hg 13.54 1.45 __ 2.26 -- 0 0.56 2 2 1.752 0.007 1.724 0.009 0.56 0.991 4 3 [121,225] Nickel Ni 1.644 -0.04 0.05 1.32 0.02 0.67 3.15 1 16 -0.4 0.3 1.47 0.06 2.86 5.73 2 19 G'W Nickel Ni 3.202 -0.09 0.07 1.71 0.02 1.53 4.045 2 6 0.87 0.17 1.46 0.02 4.045 10.31 4 3 PO91 Nickel Ni 4.198 0.02 0.13 1.88 0.05 0.61 3.86 2 15 LW Nickel Ni 5.15 0.7 __ 1.9 -- 1.23 1.98 2 2 1.40 0.09 1.606 0.019 1.98 8.91 4 7 [209] Nickel Ni 6.275 0.23 0.09 2.79 0.13 0.54 0.80 1 3 1.02 0.10 2.03 0.05 0.80 3.28 2 9 2.15 __ 1.64 __ 3.28 4.62 4 2 [209] TABLE 1. Shock Wave Equation of State of Minerals and Related Materials of the Solar System (continued) Sample error lower upper References / Mineral Formula Density Co ACo S error UP UP Phase” NO. of Temp. Refs. (Mg/m3) (kmlsec) (kmlsec) AS (kmhec) (kmhec) Data Nickel Ni 8.896 4.57 0.04 0.29 0.17 0 0.354 1 4 3.83 0.17 2.5 0.3 0.349 0.635 2 28 4.31 0.04 I .63 0.03 0.635 2.63 4a 52 5.41 0.08 1.300 0.015 2.63 7.5 4b 18 [24,25,90,121, 131,166,209, 213,217,226] Palladium Pd 11.996 3.83 0.02 1.83 0.04 0.00 0.825 2 7 4.09 0.05 1.49 0.03 0.803 2.317 4 13 [56,121,136,166, 217,226] Platinum Pt 21.445 3.587 0.014 1.556 0.008 0.00 3.444 2 29 [86,121,136,166, 217,226] Rhenium Re 20.53 4.12 0.05 -0.04 0.18 0.00 0.372 1 3 3.56 0.08 1.63 0.08 0.372 1.441 2 7 4.0 0.2 1.32 0.12 1.346 2.028 4 6 [121,136] Rhenium Re 20.984 4.16 0.04 1.40 0.06 0.00 1.127 2 7 [121,1361 Rhodium Rb 12.422 4.28 0.12 2.7 0.4 0.00 0.426 1 4 4.76 0.05 1.41 0.04 0.369 2.004 2 14 4.043 0.018 1.713 0.006 2.004 3.8 4 3 [24,121,136,166, 2261 Silver Ag 10.49 3.23 0.04 1.59 0.03 0.00 2.149 2 16 3.56 0.13 1.46 0.04 2.12 4.32 4 9 [24,30,56,121, 131,166,217, 2261 Suessite (Fe,Ni)$i 6.870 5.21 -- 2.25 -_ 0.00 0.495 1 2 5.53 0.06 1.23 0.03 0.495 3.627 2 32 [42,121] Sulfur S 2.02 3.633 0.013 0.606 0.010 0.897 1.470 2 3 2.8 0.3 1.18 0.15 1.431 2.046 4 6 Wll Taenite (Fe,Ni) 7.933 4.41 0.05 1.01 0.05 0.00 1.09 1 11 (also 3.79 0.05 1 1.65 0.02 1.019 2.777 2 41 Kamacite) 4.20 0.17 1.48 0.05 2.723 4.59 4 11 [36,121,132,136, 2171 TABLE 1. Shock Wave Equation of State of Minerals and Related Materials of the Solar System (continued) Sample error lower upper References / Mineral Formula Density Co ACo S error UP UP Phase* NO. of Temp. Refs. i CJv&/m3) (kndsec) (kmhec) AS (kndsec) (kmhec) Data R s Tin Sn 7.299 2.60 0.15 2.2 0.9 0.00 0.304 1 3 3.33 0.07 -0.14 0.15 0.304 0.5 3 6 2.48 0.03 1.57 0.03 0.5 2.15 2 66 3.43 0.03 1.205 0.008 2.15 8 4 33 [24,25,30,121, 126,131,166, 213,217, 2261 Wairauite CoFe 8.091 4.64 0.04 1.63 0.08 0.00 0.647 2 12 5.69 0.02 -0.10 0.02 0.663 1.037 3 5 3.78 0.08 1.62 0.04 1.038 2.801 4 10 Wll Zinc Zn 6.51 3.69 0.17 0.98 0.12 0.54 2.08 2 3 3.04 0.15 1.35 0.05 2.08 5.04 4 4 PI Zinc Zn 7.138 3.00 0.02 1.586 0.013 0.00 3.01 2 39 3.70 0.15 1.37 0.04 2.98 4.85 3 10 4.05 0.02 1.303 0.003 4.85 8 4 9 [24,25,30,121, 126,131,166, 217,224, 2261 Carbides: Moissanite Sic 2.333 2.3 0.3 1.84 0.12 2.048 3.444 4 10 [121,127,136] Moissanite Sic 3.029 8.4 0.6 0.3 0.3 1.535 2.112 3 3 5.6 0.3 1.62 0.14 2.112 2.842 4 4 Cl211 Moissanite SIC 3.122 8.0 6.0 0.00 0.464 1 2 10.29 i.13 -0.38 0.10 0.674 1.678 3 9 7.84 0.11 1.03 0.05 1.678 2.912 4 10 [ 121,127.136] Tantalum TaC 12.626 3.32 0.09 1.49 0.05 0.887 2.619 2 20 Cl211 Carbide Tantalum TaC 14.110 4.34 0.05 1.36 0.03 0.435 3.76 2 21 [121,152] Carbide

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.