ebook img

Ship resistance and propulsion : practical estimation of ship propulsive power PDF

563 Pages·2011·8.549 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Ship resistance and propulsion : practical estimation of ship propulsive power

SHIP RESISTANCE AND PROPULSION ShipResistanceandPropulsionisdedicatedtoprovidingacomprehensiveandmodern scientific approach to evaluating ship resistance and propulsion. The study of propul- sive power enables the size and mass of the propulsion engines to be established and estimates made of the fuel consumption and likely operating costs. This book, written byexpertsinthefield,includesthelatestdevelopmentsfromappliedresearch,includ- ingthoseinexperimentalandCFDtechniques,andprovidesguidanceforthepractical estimationofshippropulsivepowerforarangeofshiptypes.Thistextincludessufficient publishedstandardseriesdataforhullresistanceandpropellerperformancetoenable practitioners to make ship power predictions based on material and data contained within the book. A large number of fully worked examples are included to illustrate applicationsofthedataandpoweringmethodologies;theseincludecargoandcontainer ships,tankersandbulkcarriers,ferries,warships,patrolcraft,workboats,planingcraft and yachts. The book is aimed at a broad readership including practising naval archi- tectsandmarineengineers,sea-goingofficers,smallcraftdesignersandundergraduate andpostgraduatedegreestudents.Itshouldalsoappealtoothersinvolvedintransport- ation,transportefficiencyandeco-logistics,whoneedtocarryoutreliableestimatesof shippowerrequirements. Anthony F. Molland is Emeritus Professor of Ship Design at the University of Southampton in the United Kingdom. For many years, Professor Molland has extens- ively researched and published papers on ship design and ship hydrodynamics includ- ing propellers and ship resistance components, ship rudders and control surfaces. He alsoactsasaconsultanttoindustryinthesesubjectareasandhasgainedinternational recognitionthroughpresentationsatconferencesandmembershiponcommitteesofthe InternationalTowingTankConference(ITTC).ProfessorMollandistheco-authorof Marine Rudders and Control Surfaces (2007) and editor of The Maritime Engineering ReferenceBook(2008). Stephen R. Turnock is Professor of Maritime Fluid Dynamics at the University of Southampton in the United Kingdom. Professor Turnock lectures on many subjects, including ship resistance and propulsion, powercraft performance, marine renewable energyandapplicationsofCFD.Hisresearchencompassesbothexperimentalandthe- oreticalworkonenergyefficiencyofshipping,performancesport,underwatersystems and renewable energy devices, together with the application of CFD for the design of propulsion systems and control surfaces. He acts as a consultant to industry in these subject areas, and as a member of the committees of the International Towing Tank Conference (ITTC) and International Ship and Offshore Structures Congress (ISSC). ProfessorTurnockistheco-authorofMarineRuddersandControlSurfaces(2007). DominicA.HudsonisSeniorLecturerinShipScienceattheUniversityofSouthampton intheUnitedKingdom.Dr.Hudsonlecturesonshipresistanceandpropulsion,power- craft performance and design, recreational and high-speed craft and ship design. His research interests are in all areas of ship hydrodynamics, including experimental and theoreticalworkonshipresistancecomponents,seakeepingandmanoeuvring,together withshipdesignforminimumenergyconsumption.Heisamemberofthe26thInter- nationalTowingTankConference(ITTC)specialistcommitteeonhigh-speedcraftand wasamemberofthe17thInternationalShipandOffshoreStructuresCongress(ISSC) committeeonsailingyachtdesign. Ship Resistance and Propulsion PRACTICAL ESTIMATION OF SHIP PROPULSIVE POWER Anthony F. Molland UniversityofSouthampton Stephen R. Turnock UniversityofSouthampton Dominic A. Hudson UniversityofSouthampton cambridgeuniversitypress Cambridge,NewYork,Melbourne,Madrid,CapeTown, Singapore,Sa˜oPaulo,Delhi,Tokyo,MexicoCity CambridgeUniversityPress 32AvenueoftheAmericas,NewYork,NY10013-2473,USA www.cambridge.org Informationonthistitle:www.cambridge.org/9780521760522 (cid:2)c AnthonyF.Molland,StephenR.Turnock,andDominicA.Hudson2011 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2011 PrintedintheUnitedStatesofAmerica AcatalogrecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloginginPublicationdata Molland,AnthonyF. Shipresistanceandpropulsion:practicalestimationofshippropulsivepower/ AnthonyF.Molland,StephenR.Turnock,DominicA.Hudson. p. cm. Includesbibliographicalreferencesandindex. ISBN978-0-521-76052-2(hardback) 1.Shipresistance. 2.Shipresistance–Mathematicalmodels. 3.Shippropulsion. 4.Shippropulsion–Mathematicalmodels. I.Turnock,StephenR. II.Hudson,DominicA. III.Title. VM751.M65 2011 623.8′12–dc22 2011002620 ISBN978-0-521-76052-2Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyInternetWebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchWebsitesis,orwillremain, accurateorappropriate. Contents Preface pagexv Nomenclature xvii Abbreviations xxi FigureAcknowledgements xxv 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 History 1 Powering:OverallConcept 3 ImprovementsinEfficiency 3 references (chapter 1) 5 2 PropulsivePower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 ComponentsofPropulsivePower 7 2.2 PropulsionSystems 7 2.3 Definitions 9 2.4 ComponentsoftheShipPowerEstimate 10 3 ComponentsofHullResistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1 PhysicalComponentsofMainHullResistance 12 3.1.1 PhysicalComponents 12 3.1.2 MomentumAnalysisofFlowAroundHull 17 3.1.3 SystemsofCoefficientsUsedinShipPowering 21 3.1.4 MeasurementofModelTotalResistance 23 3.1.5 TransverseWaveInterference 29 3.1.6 DimensionalAnalysisandScaling 33 3.2 OtherDragComponents 36 3.2.1 AppendageDrag 36 3.2.2 AirResistanceofHullandSuperstructure 45 3.2.3 RoughnessandFouling 51 3.2.4 WindandWaves 57 3.2.5 ServicePowerMargins 63 references (chapter 3) 64 v vi Contents 4 Model-ShipExtrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.1 PracticalScalingMethods 69 4.1.1 TraditionalApproach:Froude 69 4.1.2 FormFactorApproach:Hughes 70 4.2 GeosimSeries 71 4.3 FlatPlateFrictionFormulae 72 4.3.1 FroudeExperiments 72 4.3.2 SchoenherrFormula 76 4.3.3 TheITTCFormula 78 4.3.4 OtherProposalsforFrictionLines 79 4.4 DerivationofFormFactor(1+k) 79 4.4.1 ModelExperiments 80 4.4.2 CFDMethods 81 4.4.3 EmpiricalMethods 81 4.4.4 EffectsofShallowWater 82 references (chapter 4) 83 5 Model-ShipCorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.1 Purpose 85 5.2 Procedures 85 5.2.1 OriginalProcedure 85 5.2.2 ITTC1978PerformancePredictionMethod 87 5.2.3 Summary 90 5.3 ShipSpeedTrialsandAnalysis 90 5.3.1 Purpose 90 5.3.2 TrialsConditions 91 5.3.3 ShipCondition 91 5.3.4 TrialsProceduresandMeasurements 91 5.3.5 Corrections 92 5.3.6 AnalysisofCorrelationFactorsandWakeFraction 94 references (chapter 5) 96 6 RestrictedWaterDepthandBreadth . . . . . . . . . . . . . . . . . . . . . . . . .97 6.1 ShallowWaterEffects 97 6.1.1 DeepWater 97 6.1.2 ShallowWater 97 6.2 BankEffects 100 6.3 BlockageSpeedCorrections 100 6.4 Squat 103 6.5 WaveWash 103 references (chapter 6) 105 7 MeasurementofResistanceComponents . . . . . . . . . . . . . . . . . . . . . 108 7.1 Background 108 7.2 NeedforPhysicalMeasurements 108 7.3 PhysicalMeasurementsofResistanceComponents 110 7.3.1 SkinFrictionResistance 110 Contents vii 7.3.2 PressureResistance 115 7.3.3 ViscousResistance 118 7.3.4 WaveResistance 123 7.4 FlowFieldMeasurementTechniques 136 7.4.1 Hot-WireAnemometry 136 7.4.2 Five-HolePitoˆtProbe 136 7.4.3 Photogrammetry 137 7.4.4 Laser-BasedTechniques 138 7.4.5 Summary 140 references (chapter 7) 141 8 WakeandThrustDeduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 8.1 Introduction 144 8.1.1 WakeFraction 144 8.1.2 ThrustDeduction 145 8.1.3 RelativeRotativeEfficiencyη 145 R 8.2 OriginsofWake 145 8.2.1 PotentialWake:w 146 P 8.2.2 FrictionalWake:w 146 F 8.2.3 WaveWake:w 146 W 8.2.4 Summary 146 8.3 NominalandEffectiveWake 146 8.4 WakeDistribution 147 8.4.1 GeneralDistribution 147 8.4.2 CircumferentialDistributionofWake 148 8.4.3 RadialDistributionofWake 149 8.4.4 AnalysisofDetailedWakeMeasurements 149 8.5 DetailedPhysicalMeasurementsofWake 150 8.5.1 CircumferentialAverageWake 150 8.5.2 DetailedMeasurements 151 8.6 ComputationalFluidDynamicsPredictionsofWake 151 8.7 ModelSelf-propulsionExperiments 151 8.7.1 Introduction 151 8.7.2 ResistanceTests 152 8.7.3 PropellerOpenWaterTests 152 8.7.4 ModelSelf-propulsionTests 152 8.7.5 TrialsAnalysis 155 8.7.6 WakeScaleEffects 155 8.8 EmpiricalDataforWakeFractionandThrustDeductionFactor 156 8.8.1 Introduction 156 8.8.2 SingleScrew 156 8.8.3 TwinScrew 159 8.8.4 EffectsofSpeedandBallastCondition 161 8.9 TangentialWake 162 8.9.1 OriginsofTangentialWake 162 8.9.2 EffectsofTangentialWake 163 references (chapter 8) 164 viii Contents 9 NumericalEstimationofShipResistance . . . . . . . . . . . . . . . . . . . . . 166 9.1 Introduction 166 9.2 HistoricalDevelopment 167 9.3 AvailableTechniques 168 9.3.1 Navier–StokesEquations 168 9.3.2 IncompressibleReynoldsAveragedNavier–Stokes equations(RANS) 169 9.3.3 PotentialFlow 170 9.3.4 FreeSurface 171 9.4 InterpretationofNumericalMethods 172 9.4.1 Introduction 172 9.4.2 ValidationofAppliedCFDMethodology 174 9.4.3 AccesstoCFD 176 9.5 ThinShipTheory 177 9.5.1 Background 177 9.5.2 DistributionofSources 178 9.5.3 ModificationstotheBasicTheory 179 9.5.4 ExampleResults 179 9.6 EstimationofShipSelf-propulsionUsingRANS 180 9.6.1 Background 180 9.6.2 MeshGeneration 180 9.6.3 BoundaryConditions 181 9.6.4 Methodology 181 9.6.5 Results 183 9.7 Summary 185 references (chapter 9) 185 10 ResistanceDesignData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 10.1 Introduction 188 10.2 DataSources 188 10.2.1 StandardSeriesData 188 10.2.2 OtherResistanceData 190 10.2.3 RegressionAnalysisofResistanceData 190 10.2.4 NumericalMethods 191 10.3 SelectedDesignData 192 10.3.1 DisplacementShips 192 10.3.2 Semi-displacementCraft 208 10.3.3 PlaningCraft 212 10.3.4 SmallCraft 220 10.3.5 Multihulls 223 10.3.6 Yachts 229 10.4 WettedSurfaceArea 235 10.4.1 Background 235 10.4.2 DisplacementShips 235 10.4.3 Semi-displacementShips,Round-BilgeForms 236 10.4.4 Semi-displacementShips,Double-ChineForms 238 Contents ix 10.4.5 PlaningHulls,SingleChine 239 10.4.6 YachtForms 239 references (chapter 10) 240 11 PropulsorTypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .246 11.1 BasicRequirements:ThrustandMomentumChanges 246 11.2 LevelsofEfficiency 246 11.3 SummaryofPropulsorTypes 247 11.3.1 MarinePropeller 247 11.3.2 ControllablePitchPropeller(CPpropeller) 248 11.3.3 DuctedPropellers 248 11.3.4 Contra-RotatingPropellers 249 11.3.5 TandemPropellers 250 11.3.6 Z-DriveUnits 250 11.3.7 PoddedAzimuthingPropellers 251 11.3.8 WaterjetPropulsion 252 11.3.9 CycloidalPropeller 252 11.3.10 PaddleWheels 253 11.3.11 Sails 253 11.3.12 Oars 254 11.3.13 LateralThrustUnits 254 11.3.14 OtherPropulsors 255 11.3.15 Propulsion-EnhancingDevices 256 11.3.16 AuxiliaryPropulsionDevices 257 references (chapter 11) 258 12 PropellerCharacteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .261 12.1 PropellerGeometry,Coefficients,Characteristics 261 12.1.1 PropellerGeometry 261 12.1.2 DimensionalAnalysisandPropellerCoefficients 266 12.1.3 PresentationofPropellerData 266 12.1.4 MeasurementofPropellerCharacteristics 267 12.2 Cavitation 270 12.2.1 Background 270 12.2.2 CavitationCriterion 272 12.2.3 SubcavitatingPressureDistributions 273 12.2.4 PropellerSectionTypes 275 12.2.5 CavitationLimits 275 12.2.6 EffectsofCavitationonThrustandTorque 277 12.2.7 CavitationTunnels 278 12.2.8 AvoidanceofCavitation 281 12.2.9 PreliminaryBladeArea–CavitationCheck 282 12.2.10 Example:EstimateofBladeArea 284 12.3 PropellerBladeStrengthEstimates 284 12.3.1 Background 284 12.3.2 PreliminaryEstimatesofBladeRootThickness 285 12.3.3 MethodsofEstimatingPropellerStresses 285 x Contents 12.3.4 PropellerStrengthCalculationsUsingSimpleBeam Theory 286 references (chapter 12) 293 13 PoweringProcess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .296 13.1 SelectionofMarinePropulsionMachinery 296 13.1.1 SelectionofMachinery:MainFactorstoConsider 296 13.1.2 PropulsionPlantsAvailable 296 13.1.3 PropulsionLayouts 299 13.2 Propeller–EngineMatching 299 13.2.1 Introduction 299 13.2.2 ControllablePitchPropeller(CPPropeller) 301 13.2.3 TheMulti-EnginedPlant 302 13.3 PropellerOff-DesignPerformance 303 13.3.1 Background 303 13.3.2 Off-DesignCases:Examples 304 13.4 VoyageAnalysisandIn-serviceMonitoring 306 13.4.1 Background 306 13.4.2 DataRequiredandMethodsofObtainingData 307 13.4.3 MethodsofAnalysis 307 13.4.4 LimitationsinMethodsofLoggingandDataAvailable 310 13.4.5 DevelopmentsinVoyageAnalysis 311 13.4.6 FurtherDataMonitoringandLogging 311 references (chapter 13) 312 14 HullFormDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .313 14.1 General 313 14.1.1 Introduction 313 14.1.2 Background 313 14.1.3 ChoiceofMainHullParameters 314 14.1.4 ChoiceofHullShape 318 14.2 ForeEnd 322 14.2.1 BasicRequirementsofForeEndDesign 322 14.2.2 BulbousBows 323 14.2.3 Seakeeping 328 14.2.4 Cavitation 328 14.3 AftEnd 328 14.3.1 BasicRequirementsofAftEndDesign 328 14.3.2 SternHullGeometrytoSuitPoddedUnits 331 14.3.3 ShallowDraughtVessels 333 14.4 ComputationalFluidDynamicsMethodsApplied toHullFormDesign 334 references (chapter 14) 334 15 NumericalMethodsforPropellerAnalysis . . . . . . . . . . . . . . . . . . . .337 15.1 Introduction 337 15.2 HistoricalDevelopmentofNumericalMethods 337

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.