Open Archive Toulouse Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited version published in: http://oatao.univ-toulouse.fr/ Eprints ID: 5843 To link to this article:DOI:10.1016/J.CLAY.2010.06.008 URL: http://dx.doi.org/10.1016/J.CLAY.2010.06.008 To cite this version: Khodja, Mohamed and Canselier, Jean-Paul and Bergaya, Faiza and Fourar, Karim and Khodja, Malika and Cohaut, Nathalie and Benmounah, Abdelbaki (2010) Shale problems and water- based drilling fluid optimisation in the Hassi Messaoud Algerian oil field. Applied Clay Science, vol. 49 (n° 4). pp. 383-393. ISSN 0169-1317(cid:3) Any correspondence concerning this service should be sent to the repository administrator: [email protected](cid:3) Shale problems and water-based drilling fluid optimisation in the Hassi Messaoud Algerian oil field Mohamed Khodjaa,⁎, Jean Paul Canselierb, Faiza Bergayac, Karim Fourard, Malika Khodjae, Nathalie Cohautc, Abdelbaki Benmounahd aSONATRACH/DivisionLaboratoires,Avenuedu1erNovembre,Boumerdès35000,Algeria bUniversitédeToulouse;INPT,UPS;LaboratoiredeGénieChimique(UMRCNRS5503),4alléeEmileMonso,BP84234,F31432ToulouseCedex4,France cCentredeRecherchesurlaMatièreDivisée,1RuedelaFérollerie,CNRS,Orléans,France dLaboratoiredesmatériauxcompositesetalliages,UniversitédeBoumerdès,Algeria eSONATRACH/DivisionForage,10RueduSahara,Algiers,Algeria a b s t r a c t Drillingfluidformulationandpropertiesplayafundamentalroleindrillingoperations.Claymineralsbehave initially as a beneficial rheological adjuvant in drilling muds. Nevertheless, the contamination of oil reservoirsbyclaymineralspresentinthedrilledgeologicalformation(shales)maygeneratemajorproblems duringdrillingasplugformation.Inthiscontext,ourstudydealswiththeoptimisationofdrillingconditions in theHassi Messaoud Algerian field. Themineralogical heterogeneity of this field is first discussed. The rheological and filtration characteristics of water-based muds with different polymer and electrolyte concentrationsareinvestigated.Thephysicalandchemicalchangesofbothdrilledformationanddrilling fluid during the drilling process are studied. Therefore, depending on the clay present in the geological formation,anoptimiseddrillingfluidsystemusinganewfiltrationprocedureisproposed.Agoodcorrelation isfoundbetweenfiltration/rheologicalpropertiesandinhibition. 1.Introduction lubricity and temperature stability. However, their use becomes restrictedbyenvironmentalregulations,sothatthereisagreatneed Thecomplexdrillingfluidsrepresent15 to18%ofthetotalcost forenvironmentally-friendlyWBMabletoprovidethesameaccept- (about$1million)ofpetroleumwelldrilling.Theirformulationand ablerequirements(boreholestability)asOBM. characterisation need various techniques. The classical water-based The drilling performances of 100 Algerian wells located in the muds(WBM),atleastspudmuds,containedonlywaterandclaybut HassiMessaoud(HMD)fieldwerecompared.Resultsshowthatmajor theirperformances,directlyevaluatedbythestabilityofthesystem problems occur in the 12"1/4 (actually 16") interphase and are and the rheological and filtration properties, were generally poor. observed at 700–950m depth as a consequence of variable rate of CurrenttendenciesaretoincreasetheWBMperformancesortouse penetration (ROP), varying from 8 to 24m/h. Several problems are biodegradableadditivesinoil-basedmuds(OBM). mentioned such as lost circulation, specially in Turonian and Salt Wellboreinstabilityisthelargestsourceoftrouble,wasteoftime Senonianformations,shaleinstabilities,holecleaningproblemsdue andovercostsduringdrilling.Thisseriousproblemmainlyoccursin to a reduction of annular velocities in enlarged hole sections, well shales (principally clays), which represent 75% of all formations cavingandcollapse. drilledbytheoilandgasindustry.Theremaining25%arecomposedof DispersiontestswerecarriedoutonAlgeriancuttingssamplesand othermineralssuchassand,salt,etc.Thewellboreinstabilityisdueto the results are discussed and compared with field experiments. thedispersionoftheclayintoultra-finecolloidalparticlesandthishas Cuttingssamplescontainingclaywithdifferentcharacteristics(type, adirectimpactonthedrillingfluidproperties(CharlezandHeugas, size, content, cation exchange capacity) were chosen from various 1991). wells and at different depths. Numerous tests were performed in The physical properties and behaviour of shale exposed to a differentexperimentalconditions: drilling fluid depend on the type and amount of clay in the shale. Generally,OBMprovideexcellentwellborestabilityandaffordgood 1. conventionaldispersiontestswithoriginalcuttingssamples, 2. observation tests of confined shale pellets of different sizes in contactwithmuds, ⁎ Correspondingauthor.Tel.:+21324815723;fax:+21324818557. 3. filtrationteststhroughshalecompactedinAPIcellwithindifferent E-mailaddresses:[email protected],[email protected] (M.Khodja). pressureranges, 4. filtration tests through shale and/or core samples compacted in citedabove,areadded.Clay–polymerinteractionsarethusimportant Hasslercellunderactualfieldconditions(pressureandtemperature). in drilling fluids (Bailey et al., 1994). The challenge is then to find whichtypeofpolymer-baseddrillingfluidshouldbeused. Foralltheseexperiments,theinfluenceofparameters,suchasfluid PHPA is a water-soluble anionic synthetic polymer, which is type,cuttingsmineralogy,pressureandtemperaturewasstudied. commerciallyavailableindry(granularpowder)oremulsifiedform. Themostcommonlyusedindrillingforboreholestabilisationinshale 1.1.Shaleinstability formationsisthepartiallyhydrolysed(30%)polyacrylamide.PHPA– clayslurriestendtoformarelativelythinfiltercakeattheborehole Whenthewellborewallsbecomeunstable,thespillingofcuttings wall, a characteristic often cited as an advantage (Darley and Gray, causesadisastrouschangeintherheologicalpropertiesofthemud 1988).Moreover,silicate-containingfluidsshowgoodshaleswelling (Beihofferetal.,1988). inhibition,lowdepletionrateandhighrateofpenetration(ROP)and Several studies on shale–fluid interactions confirm that various additionallytheyareenvironmentallyfriendly(Wardetal.,1997;Van causes are at the origin of borehole instability: water adsorption, Oortetal.,1999;TareandMody,2000). osmoticswellingandcationexchange.DifferentapproachestoWBM InWBM,poly-(glycerols) and poly-(glycols) (abbreviated in the designare suggested(Boletal., 1992; Cooketal., 1993; Modyand followingasglycerolsandglycols)havebeenwidelyappliedinshale- Hale,1993;VanOort,2003). drilling fluids (Chenevert, 1989; Bland, 1991; Bland et al., 1995; Many works also focused on the selection of drilling fluids for Downsetal.,1993;Cliffeetal.,1995;Reidetal.,1993;Twynametal., given shale formations (Darley, 1969; Chenevert, 1970; Roehl and 1994).Theypreventcuttingsfromdispersingintothemedium(Bailey Hackett, 1982; Beihoffer et al., 1988; Zamoraet al., 1990; Hale and etal.,1994).Therefore,theyincreasedrillingrates(Reidetal.,1993; Mody,1992;Baileyetal.,1994;Simpsonetal.,1994;Durandetal., Cliffeetal.,1995). 1995; Horsud et al., 1998; Pernot, 1999). More recent studies on Moreover, potassium salts have been used for a long time as shale–fluid interactions suggest a new approach to WBM design swelling inhibitors in WBM. The inhibition is explained by the (Lomba et al., 2000; Schlemmer et al., 2002; Van Oort, 2003). possiblepenetrationofsmallnon-hydratedionsintotheporosityof Considerationisgiventomaintainboreholestabilisationinreactive the shale (Simpson et al., 1994), thus forming an effective semi- shales by reducing hydration (swelling) and/or dispersion. This permeablemembrane.Organic(xanthangum,PAC,PHPAandPAG)or processisgenerallyreferredas“inhibition”. mineral (sodium silicate) polymers are probably too large to enter Scarce research and few field tests have been conducted on shale pores. Some theoretical models (Van Oort et al., 1994, 1995, AlgerianfieldstoinvestigateWBMeffectsondrillingoperations.Van 1999) explain the reduction of the filtrate flow into shale by both Oort (2003) considered the replacement of OBM, currently used in mechanisms, an increase of the viscosity leading to a reduction of someAlgerianfields,byWBM.Thisauthorshowsthatthepresenceof shalepermeabilityandaflowofmudfiltrateintotheshaledrivenby additives in WBM, such as polymer and KCl, aims to reduce shale osmoticpressure. instability.Claywetabilityandinhibitionpropertieswerestudiedby analysingthebehaviourofwater–clay–polymer–electrolytesystems. 1.3.Filtrationandinhibition These properties are connected to the rheological and filtration characteristicsforbothmudandfiltrate. Theknowledgeofthefiltrationpropertiesisveryimportantinthe Cuttingscharacterisation is a key parameter to explainhow salt design of drilling fluid formulation. Some works (Loeber, 1992; Li, added to WBM, affects shale stabilisation. Recovered cuttings, 1996;Argillieretal.,1997;Bennaetal.,1999andBennaetal.,2001) generally contaminated by drilling fluid, are washed. Specialised have shown that the filtration across the cake depends on several laboratoriesrecommendcuttingssolventwashing(GuptaandSantos, parameters such as initial clay content, particle or aggregate 2002; M.I. Corporation, 2002). The washing could lead to positive association, water retention and permeability, experimental condi- effectssuchaspluggingwhichreducespermeabilityandfiltration,or tions,etc.FergusonandKlotz(1954),showthat70%to90%ofthetotal negative effects in inhibitive tests such as contamination of shale filtratevolume,flowingthroughpermeableformations,occursduring sampleswhichaffectspolymerevaluationseriously.Thedevelopment mud circulation. During this dynamic filtration, the invasion radius of a prototypedevice tocollect and preservea washed, continuous reachesavalueof85%.Aconstantflowrateisreachedwhenfiltration stratigraphicsequenceofdrillcuttingsisworthmentioning. forces, leading to the formation of a mud cake, are balanced by hydrodynamicforces,i.e.mudcirculationthaterodesthemudcake. 1.2.Roleandcompositionofdrillingfluids 1.4.Shalecharacterisationandinhibitiontechniques Drillingthewellboreisthefirstandthemostexpensivestepinoil andgasindustry.AlthoughOBMgivegreatershalestabilitythanWBM Themainmethodsdevelopedforshalecharacterisationandfluid (Bol et al., 1992), several WBM systems have been developed to inhibitionperformancesdealwithcomposition,reactivity,mechanical replace OBM in order to respond to environmental regulations andphysico-chemicalpropertiesofshales(orclay): (Simpson et al., 1994; Friedheim et al., 1999; Patel et al., 2001; YoungandMaas,2001;Schlemmeretal.,2002). - X-raydiffraction(XRD)analysistodeterminequalitativemineral For laboratory tests, a typical mud contains several additives at content, concentrationscommonlyused,includingaviscosifier(xanthangum - Cationexchangecapacity(CEC)andmethylenebluetest(MBT)to withorwithoutbentonite),afluidlossreducer(polyanioniccellulose: evaluate reactivity and shale factor of drilled cuttings. The MBT PAC), and different polymeric swelling inhibitors such as partially methodwasrecommendedbyAPI13I,Section11(2003), hydrolysed polyacrylamide (PHPA), sodium silicate and polyalkyle- - Agravimetricswellingtest(GST),usedtomeasurewaterandion neglycols(PAGor“glycol”)toimproveshalestability. motionduringshale/mudinteraction(Zhangetal.,2004), Bentonite, a worldwide-used drilling fluid additive, is added to - Capillary suction time (CST) for determination of filtration fresh waterto increase hole cleaningproperties and to forma thin propertiesandsaltconcentrationoptimisation(Wilcoxetal.,1987), filtercakeoflowpermeability.Itsmainfunctionsaretoviscosifythe - Penetrometertoestimatethedegreeandthedepthofsoftening mud and to reduce the loss of fluids in the formation. In order to (Reid et al., 1993) or “Bulk Hardness Test” designed to give an stabilise clay particles and to prevent their swelling/dispersion assessmentofthehardnessofshalefollowingexposuretoatest behaviourinthepresenceofwater,otheradditives,suchaspolymers fluid(Pateletal.,2002), - Dielectricconstantmeasurement(DCM)toquantifyswellingclay Some shale cuttings and core samples from Hassi Messaoud contentanddeterminespecificarea(LeugandSteig,1992), Algerianwellshavebeenanalysedasfollows: - Triaxial test for pore pressure measurements, carried out in - Cuttingswereair-driedatroomtemperatureandpowderedina downhole simulation cell (DSC) for compressive stress/strain porcelainmortar. behaviour(SalisburyandDeem,1990), - The moisture content of each shale was measured by drying at - Oedometer test for pore pressure modification and chemical 105°Cuntilaconstantweightwasobtained. potentialinfluence(Boletal.,1992), - Accordingtosomeearlierresultsregardingorganiccontamination - Slakedurabilitytest(SDT),astandardmethodoriginallyusedin (Benayadaetal.,2003;Khodja,2006;Khodja,2008),allcuttings geotechnicalstudieswhenmeasuringtheweatheringandstability samplesusedwerewashedwithn-hexaneanddriedat105°C.The ofrockslope:ASTMD4644-97(ASTM,2000), reapproved 1992 absenceoforganiccarbonafterwashingwasnoted. (Likosetal.,2004), - ThemineralcompositionwasdeterminedbyXRDanalysis,witha - Jarslaketesting,aqualitativemethoddesignedtoevaluateshale PhilipsPW1710diffractometer. relative durability in contact with a given fluid. Wood and Deo - Thecationexchangecapacity(CEC)wasdeterminedbyusingthe (1975), Lutton (1977) describe details of this method using six cobaltihexamminetrichloridemethod(Chauveteauetal.,1988). indices, - DifferentfluidsystemswerepreparedusingAPIequipments(API - Differential strain curve analysis (DSCA) for in-situ measuring RP13B-1,2003). stressorientationandintensity(Fjaer,1999), - Densities, pH and rheological parameters were determined. The - Hot-rolling dispersion test (shale disintegration resistance or rheologicalmeasurementswereconductedatvariablespeed(3to cuttings dispersion test), the most widely used technique in 600rpm)usingaFann35AviscometergivingvaluesincPorin optimising drilling fluid. Appreciated for its simplicity, low cost mPa.s and with using the following formulas from API recom- and duration, it has been recommended by several laboratories mended practice for field testing drilling fluids. The numerical andadoptedbyAPI(1997).Itconsistsofaddingaknownamount valueoftheplasticviscosity(PVincP)isgivenby:(600rpmdial ofshalecuttingstoastandardvolumeoftestfluidcontainedina reading—300rpmdialreading),apparentviscosity(AVincP)is steelbomb.Thebombisrolledforafixedtime,usually16h,ata givenby:[(600rpmdialreading)/2],andYieldPoint(YPinPa)by: given temperature; the shale is then recovered on a sieve. The 2(AV–PV).Otherrheologicalmeasurementsonpolymersolutions amountofrecoveredshaleisexpressedasapercentageoforiginal werecarriedoutwithAR2000equipment(TexasInstruments). weight. High percent recoveries and low moisture contents are - APIfiltrate,andgel0/10(3rpmdialreadingaftermixingandafter indicativeofinhibitivefluids.Clearlywithapoorlyinhibitivefluid, 10min)aredeterminedwithusingAPIrecommendations(APIRP cuttings will disperse into the fluid and zero recovery (and 13B-1,2003). therefore no moisture content determination) will result. If two - Cuttingssamplesofdifferentsizes(36to800μm)wereprepared fluidsgivethesamerecoveryratio,thefluidwhichgivesthelower forfiltrationoperations,withinthe20–150kPapressurerange. moisture content is regarded as being slightly more inhibitive. - Fluid displacement test was determined with Corelab filtration Indeed,alowerwateruptakebythecuttingsreducestheriskof system equipment (Argillier and Audibert, 1999; Muniz et al., dispersion or swelling in the wellbore. A comparative measure- 2005). Core samples were saturated with synthetic formation ment of inhibition can be obtained by considering the relative brinesolutionduring24h,placedinaHasslercellunder14kgf/ cuttingsweightsretainedoneachscreensize, cm2ofoverbalancepressureunder80°C.Soltrol130wasusedfor - Shalepelletinhibition(pelletdispersiontest):shalecuttingsare filtrationtestsinaHasslercelltoevaluateinitialandfinal(after dried and ground to less than 80 mesh, then mixed into fluidinjection)permeabilities.Returnpermeabilityorpercentage homogeneous paste with 10wt.% water. Pellets are made by ofdamage(D)isdeterminedfromcomparisonofinitialandfinal pressing approximately 20g of this paste in a carver using a Soltrolpermeabilitiesinthestablestate. hydraulicpressunder7000psifor2min(ModyandHale,1993). - Newfiltrationtest: Pelletsandfluidareintroducedinasteelbombandprocessedas In drilling fluid, “inhibition” covers all the mechanisms that can above(hot-rollingdispersiontest).Forcomparisonandreference, reduce or/and eliminate swelling, dispersion, and clay–water anOBMsystemisgenerallyused, interactions in order to enhance shale wellbore stability during - Pressuretransmissiontest,usedforconfinedorunconfinedshale drilling.Inhibitionpercentageisthedifferencebetweeninitialand (Van Oort, 1994). Muniz et al. (2004) described an apparatus finalcuttingsweightrecoveryafterfluidcontact.API(1997)give designedtoevaluateshale–drillingfluidinteractionandestimate somerecommendationsaboutthoseinhibitionmethods: shalepermeability,coefficientofreflectivity(membraneefficien- a. Testisonlyarelativemeasureandshouldbeincludedasapartofa cy)aswellasionicdiffusioncoefficient, comprehensive testing program,and as a comparison ofvarious - Microbitdrillingequipment,requiringcoresampleavailabilityand wholemudcompositions, costlyinvestment(Lamberti,1999). b. Itisstronglyrecommendedthattheshaleismaintainedasnearas possible its in-situ moisture content and must not to be air- or 2.Materialsandmethods oven-driedbeforetesting. c. Thedrillingfluidrheologyparameterhasproventobedifficultto AlgerianbentonitewasusedinWBMformulation.Theotheraddi- controlfromtesttotest.Modestchangesintherheologyfromone tivesprovidedbyMISwacoAlgeriaarei)xanthangumasviscosifier: fluidtoanothercanstronglyinfluenceshaledispersionfinalresults. thiswater-solublepolymer,slightlyanionicandhighlybranchedisa veryeffectivestabiliserforaqueouscolloidalsystems,ii)polyanionic Thecomparisonbetweenvarioustechniquesshowsanimportant cellulose(PAC)asfluidlossreducer:thiswater-solublepolymeralso contribution of each method. However, these methods are often actsasviscositymodifierandisavailableintwotypes(high-orlow- criticisedregardingfeasibility,cost,precisionandconditionsused. viscositygrade),bothofwhichimpartthesamedegreeoffluidloss Inthispaper,weproposeanewmethodcombiningdispersionand controlbutdifferentdegreesofviscosity,andiii)sodiumsilicateasa pellettests.Byusingthismethodweaimtoprotecttheinitialquality mineralinhibitor,used toimprovelubricity andshalestability, and ofgotbackcuttings,minimisegrindingandavoidmoistening,while also two polymers as inhibitors: a partially hydrolyzed polyacryl- opting for a preliminary wash to eliminate the contamination of amide (PHPA) and polyalkyleneglycol (PAG provided from BASP- cuttingsbytheadditives(polymers,surfactants,etc.)inthedrilling Baroid,Algeria). fluids. Table1 Mineralogicalcompositionofcuttings,coressamplesandAlgerianbentonite. %Clay %Nonclay Kaolinite Illite Chlorite I-Mont.a Montmorillonite Quartz Calcite Dolomite Anhydrite Barite Halite Turoniantop 0 101 – – – – 0 3 1 7 87 3 – Turonianmedium 0 100 – – – – 0 3 38 19 36 4 – Turonianbottom 0 98 – – – – 0 5 52 7 24 6 4 Cenomanianmedium 0 83 – – – – 0 6 45 5 20 3 4 Medium16"intervalb 13 87 5 70 5 20 0 19 6 8 13 11 30 Reservoircore1 6 94 50 5 45 – 0 94 – – – trc tr Reservoircore2 8 92 95 5 – – 0 92 – – – tr – Bereasample 19 81 75 15 5 5 0 80 tr 1 tr – – Algerianbentonited 83 17 – 5 – – 95 13 4 – a Interstratifiedillite–montmorillonite. b Sampleobtainedwithmixingcuttingsissuedfromseveraldepthin16"phaseinHassiMessaoudwell. c Traces. d Reference. Our new proposed method combines filtrate data (volume and 3.2.Drillingfluidperformances rate)withrheologicalandinhibitiveproperties. The stability of drilling fluids is generally indicated by its visual 3.Results homogeneityafteralongperiodofageing.ForOBMsystems,aphase separationandadecreaseofviscosityaredirectsignsofdegradation. 3.1.MineralogicalcompositionandCEC In WBM, phase separation is also an indication of mud instability. Fig.3summarisesthebehaviourofdrillingfluidstateevolution.The Mineralogicalcompositionsofcuttings,coressamplesandAlger- viscosityofmudaffectsthedispersionandtheswellingofshalesand ian bentonites are reportedin Table 1. All Turonianshalecomposi- decreasesthediffusionvelocityinporousmedium.Mudswithhigh tionsaresimilar.Topsampleshowsanhydritepredominance(87%). viscosityandaminimumfiltratevolumearepreferredforinhibition Theamountofthismineraldecreaseswithdepth,ascalcitecontent efficiency,accordingtoclassicalfiltrationequations. increasestill52%inthebottomsample.ThesamplenotedbinTable1 In the first part, the rheological behaviour of polymers used in is representative of an average composition frequently present in conventionaldrillingformulationsisstudied.Fig.4aandbshowshear Hassi Messaoud shales (Fig. 1). The presence of salt in shales was stressversusshearrateforxanthanpolymersolution(0.005to0.2wt. confirmed by XRD and Scanning Electron Microscopy (Fig. 2). %)andPAC(0.05to1wt.%),respectively.Asexpected,atlowshear Contaminationbysaltisprobablyrelatedtothedrillingformulation rate, xanthan solutions show shear-thinning behaviour, but above used(OBMwithNaCl-saturatedwater).Indeed,saltisaddedtothe 500s−1, fluids behave as quasi-Newtonian (0.2wt.%) or slightly waterphaseinordertoenhanceemulsionstability(electricaleffect shear-thickening(lowerconcentrations).Thelatterobservationmay andwateractivity)andtoincreasebothdensityandviscosity. beanartifactduetoturbulenceinducedbyhighshearratesonthe For reservoir cores and Berea sandstone sample, high quartz low-viscosityfluid. contentandkaolinitepredominate.Itisnoticedthatquartzispresent Atthesameconcentration,theviscosityofPACsolutionismuch inallsamples.TheCECofallsamplesarelow,from3.4to6.3meq/ higher than for xanthan solutions. Addition of KCl to a mixture of 100gclayexceptforAlgerianbentonitewhoseCECis60meq/100g. xanthan(0.2%)andPAC(1%)seemspredominantlytodecreasethe In field conditions, problems occurring during drilling are not viscosityincomparisonwiththeviscosityoftheequivalentPAC(1%) systematically related to the presence of clay because the samples solution,evenifaslightincreaseisobservedastheKClconcentration testedinTuronianandCenomaniandonotcontainclays(Table1).For (Fig.4c).Indeed,itisknownthatanionicpolymerPACisparticularly example, borehole stability problems at the Turonian and Cenoma- sensitivetomonovalentanddivalentcations(K+,Ca2+,Mg2+)and nian levels are solved by HCl injection for the dissolution of car- may induce polymer dehydration leading to a viscosity loss of the bonates,especiallyabundantinthoseformations(Table1). polymersolution. Fig.1.HassiMessaoudAlgerianshaleanalysis. Fig.2.XRDandscanningelectronmicrographofshale(16"HassiMessaoudsample)andsaltcontaminationcuttings. Inthesecondpart,therheologicalbehaviouroffourmudsystems gels).AsregardsthePHPAsystem,themudandthefiltrateseemto (PHPA,PAG,silicate,andspudmud)whosecompositionsarereportedin followdifferentmodels(Table3). Table2isstudied.Powerlawmodelswereoftenproposedtodefinethe TheselectedPHPAformulationandspudmudwithPHPApolymer behaviourofKCl/polymertypedrillingfluids(KökandAlikaya,2004) possessacceptablerheologicalandfiltrationcharacteristics(Table4) butmostdrillingfluidsdonotconformexactlytoanyoftheproposed accordingtoHMDdrillingfluidrequiredproperties(density:1.20to models. Herschel–Bulkley and Ostwald–de Waele rheological models 1.25,PVb30cP,Gel:7to15lb/100ft2andAPIFiltrateb10mL.PHPAis wereretainedforthosesystems(mudsandfiltrates).Theestimationof presentin thesamerange ofconcentrationsin themudandin the the three rheological parameters for Herschel–Bulkley and the two filtratebutdoesnotshowthebestinhibitiverole(Table3andFigs.6 parametersforOstwald–deWaeleequationsareshowninTable3. and 9) whereas for the two other systems, silicate and glycol, the The PAG and PHPA systems present similar properties, whereas formed cake is less permeable and thus the filtrate is less the silicate system exhibits the best results (viscosity, filtrate and concentrated. In fact,preliminarydrillingoperationsin HMD, using silicatehaveshowngoodresultswithbothtendenciestoresolveshale instabilityandtorespondtoenvironmentalregulations. TheflowbehaviourofsomemudsystemsisillustratedinFig.5.A similar trend is observed for all the studied solutions at increasing shearrate.ThefiltratevolumesobtainedfromPHPA,silicateorglycol systemsarecomparedinFig.6.Withthesamepolymerconcentration (Table2),thesilicatesystempresentsahigherviscositythanthePAG one(Table4andFig.5).Filtratevolumes(Fig.6)increaseintheorder: silicatebPAGbPHPA.PAGandPHPAshowidenticalfiltratevolumes, butnotthesamefiltrationvelocity.Thisbehaviourcanberelatedto polymermolecularweightandshale–polymerinteractiontype.With the same fixed polymer concentrations (xanthan, PAC, PHPA and silicate),thePHPAsystemgivesalowerinterfacialtensionthanthe silicateone,probablyduetoalowerviscosity.Lowviscositypromotes Fig.3.Representationofdrillingfluiddestabilisation(phaseseparation:lowviscosity wettabilityandencapsulationthatwidelygovernsinhibitivemechan- and high filtrate). A: Undesirable dispersion with an inhomogeneous additive isms(Khodja,2008). repartition. Solid–liquid, polymer-solution, dispersed phase-continuous phase are inhomogeneousandunstable.B:Optimaldispersionwithauniformadditiverepartition. Themudsystemisstableandexhibitsgoodrheologicalandfiltrationcharacteristics. 3.3.Shaleinhibitionandfiltrationtests C:Themudsystemisunstableforoneofthefollowingreasons:dramaticfiltration conditions(pressureandtemperature),useofanincompatibleadditive(contaminant) Shale testing helps to develop inhibitive WBM systems. In our orofpoorqualityproducts,orconsiderableaging.Solids,polymers,andsaltinWBM, study,amongallthetechniquesmentionedbefore,twomethodswere dispersed phase, emulsifiers or other additives in OBM are separated from the used: hot-rolling dispersion test and pellet test. Moreover, a new continuousphase.Thesystempresentsaphaseseparation,involvingadegradationof rheologicalparametersandahighfiltratevolume. procedure for filtration across pellet in an API cell was used to Table2 Water-basedmudformulations. Additive Bentonitea KCl Xanthan PHPAborPAGc PACd (g) (g) (g) orSilicate(g) (g) Concentration 20 30 1 5 5 a Bentoniteprehydratedinwaterduring24h;otheradditivesintroducedinto1Lof bentoniteslurry. b Partiallyhydrolysedpolyacrylamide. c Polyalkyleneglycol. d Polyanioniccellulose. Table3 Herschel–BulkleyandOstwald–deWaeleparameters. System Herschel–Bulkleyaτ=τ0k⋅γ⋅n Ostwald–deWaeleτ=k⋅γ⋅n PHPAbmud τ0 0.686 k 2.654 n 0.538 PHPAfiltrate k 3.418 n 0.519 PAGcmud τ0 2.013 k 0.626 n 0.643 PAGfiltrate τ0 1.459 k 0.220 n 0.702 Silicatemud k 10.86 n 0.317 Silicatefiltrate k 0.080 n 0.712 a τ:shearstress(Pa);τ0:shearstressatthethreshold(Pa);k:consistencyindexof themedium;γ:shearrate(s−1);n:flowbehaviourindex(adimensional,0bnb1). b Partiallyhydrolysedpolyacrylamide. c Polyalkyleneglycol. low cost. Some laboratories recommend using a core sample for inhibitionevaluationbutcuttingsaregenerallyusedbecauseofcore unavailability.SeveralcuttingssamplesfromvariousHassiMessaoud geological formations are used for laboratory dispersion tests on silicate-orPAG-containingWBMandOBMsystems(Table4).These tests show that the inhibition percentages obtained with silicate- WBM(96–98%)aresimilartothoseofOBM,buthigherthanthoseofa PAG-WBMsystem(78%).Numerousintegritytestsperformedonfield samples with PAG and silicate systems, lead to select silicate formulationswhichareoptimisedandproposedforpilottestonthe Hassi Messaoud field (Khodja, 2003). Hot-rolling dispersion test clearly shows a similar behaviour for all samples with silicate and PHPA(Fig.7). Severalprocedures recommend comparing initial and final sizes (orweights)forestimatinginhibitionafterfluidcontact.Thequestion Fig.4.a:Shearstressvs.shearrateforxanthanpolymersolutions.b:Shearstressvs. Table4 shearrateforPACpolymersolutions.c:Shearstressvs.shearrateforxanthanpolymer PropertiesofthePHPAaformulation. solutions(0,2%)+PAC(1%)atdifferentKClconcentrations(2to5%w/w). db PVc AVd YPe Gel0f Gel10f Filtratevolume (g/cm3) (cP) (cP) (lb/100ft2) (lb/100ft2) (lb/100ft2) (mL) evaluateshaleinhibitionwithmudsystems,usingdifferentinhibitor 1.03 22 42.5 41 7 8 8.5 polymers(PAG,silicateandPHPA). a Partiallyhydrolysedpolyacrylamide. b Density. c Plasticviscosity. 3.3.1.Hot-rollingdispersiontest d Apparentviscosity. Thehot-rollingdispersiontestrecommendedbyAPIandadopted e Yieldpoint. byseverallaboratories,iswidelyappreciatedforitssimplicityandits f ω3aftermixingandafter10min. HMD geological formations and using PAG-WBM or OBM systems (Tables5and6). 3.3.3.Newfiltrationtest The new API water loss (or fluid loss) test was carried out by replacingWhatman50filterpaperbythepelletintheAPIfiltration cell(Fig.8).Theslurrywasexposedtoa100psipressurefor30minto obtainfiltrate.Fig.9showsthatforallsystems,thefiltratevolumeis proportional to compaction force. Whatever the compaction force, silicate and PAG systemspresent the lowest filtrate volumes. PHPA formulationunderdifferentcompaction forces(from60to150kN) clearlyshowslargefiltratevolume.Evenbelow60kN,thewholefluid wasfiltered.Thecompactionforce,linkedtothedepositmodeofthe sediments,hasasignificantinfluenceonthepermeability. Itisnecessarytounderlinethatthedifferenceofcompactionisone of the difficulties met during these experiments. The compaction force,theinitialwatercontentofthepowderandthegrainsizeare takenintoaccountsincetheseparametershaveaninfluenceonthe Fig.5.Shearstressvs.shearrateofwholemudsystems. mechanicalbehaviourofthecompactedmaterial. Fig.10presentsaHasslercelloperatingunderreservoirconditions is:whichisthemainfactor(claytype,claycontentorcuttingssize) (temperature and pressure) for the filtration of pellets compacted affectingthedispersionresults? under 10kN. Permeability (k) was calculated using Darcy's law With all systems, our results show similar, rather high recovery equation. valuesforlargesize(0.8mm)(Fig.7a)butlowrecoveryvaluesfor small size (0.100 to 0.315mm) cuttings (Fig. 7b). When using dif- dV=dt=k:ΔP=η:e:A ð1Þ ferentinhibitivepolymers,almostnodifferenceinrecoveredweightis noticed between cuttings samples from different geological forma- ΔP:pressure;A:Area(cm2);η:viscosity(cP);V:filtratevolume tionsandwithdifferentmineralogicalcompositions. aftert(cm3);e:cakethicknessaftert(cm);t:time(s);andk:cake Ourrecommendationisthentouse,indispersiontests,preferably permeability(1darcy=1μm²). smallsizecuttings,whichareinclosecontactwithalladditivesusedin Damage(D)isdeterminedbycomparinginitial(k)andfinal(k) i f drillingfluidsystems.Moreover,whenusingsmallsizecuttings,clays permeabilitiesinthestablestate. arefullyexposedtothefluidandaggregationeffectiseliminated. Xanthan gum or PAC added as a viscosifier, acts synergistically D=100 k–k =ki ð2Þ ! i f" with PAG and preserves cuttings integrity. To increase glycol efficiency,aninhibitingion,preferablypotassium,wasused.Forthe HasslercellresultswithTuroniancuttingspelletsshowclearlythat silicatesystem,analysesshowhighadsorptionofsilicateiononshale. PAG exhibits low damage values (D) (Table 7). Higher values are Theinhibitionmechanismalsodependsonthetypeofpolymerused, obtainedwithPAC,xanthanandPHPAsolutions.AnalysingDandV controlled by plugging of clay pores, thus reducing the dispersion (PAG),orbysurfacecoating(filmformationwithPHPAorsilicate). values,mechanismsforxanthanandPAGsolutionscanbeproposed. Thesetwopolymersdonotreducethefiltratesufficiently;however xanthan exhibits a high viscosity and PAG high water absorption. 3.3.2.Pelletdispersiontest Higher damage value with xanthan (67%) is due to its helical Ahomogeneouspasteisformedbymixingadried,groundshale molecularstructure,highmolecularweight(MW)andanioniccharge (b 80 mesh) with 10% (wt./wt.) water. Pellets are obtained by comparedwiththelowmolecularweightofelectricallyneutralPAG. pressing approximately 20g of this paste in the carver hydraulic XanthanandPAGpreventflocculationthankstostericandCoulombic pressat7000psifor2min(Fig.8).Theresultsobtainedwiththistest effects. andhot-rollingdispersiontestaresimilarforsamplesfromdifferent Onthecontrary,silicate,PACandPHPAyieldlowfiltratevolumes but relatively high damage values. The relatively thin filter cake formedusingPHPAisnotsufficienttopreventexcessivefluidlosses. The following step concerns the influence of polymers on the drillingfluidflowthroughnaturalporousmedia:reservoircoresand Bereasandstonesamples(Table8).Inhibitivepolymers:PHPA,PAGor silicate,areaddedselectivelytoxanthan-andPAC-containingfluids. Theresultsrevealthefollowingpoints: 1. forsimilarporosity,Ø,andairpermeability,k ,theadditionofKCl air toPHPAreducesdamage(D)andfiltratevolume(V), 2. forsimilarrockandairpermeabilities,thesilicatesystemexhibits highdamagecomparedwiththePHPAsystem, 3. The PHPA system gives similar filtration properties in the new filtrationtestinAPIcell(pellet)andinHasslercell(corereservoir) (Fig. 9 and Table 8). Damage values are 65% (Table 7) and 38% (Table 8), respectively, for PHPA with pellet and PHPA with core reservoir.IntermsofdamageratioonBereasandstone,Table8shows that final Soltrol permeability (k) for PHPA without salt is the f highest, due to easier desorption. Paradoxically, PHPA gives the Fig.6.MudsystemsAPIfiltratevs.time. lowest filtrate volume (0.7mL) with minimum damage (35%) Fig.7.a:HotRollingdispersiontestwiththesamecuttingsize(800μm)anddifferentmudsystems.b:HotRollingdispersiontestwithasilicatesystem. Fig.8.Cuttings,coressamples,andprocedureusedinfiltrationmethods. Table5 (Tab.7and8),butthesilicatesystemgivesminimumfiltrateand Hot-rollingdispersiontestwithwater-basedmuds(WBM)andoil-basedmuds(OBM) maximumdamage(Tables7and8). systems. 4. Withasmallmolecularsize,theenvironmentally-friendlysilicate Sample Polymer- Inhibition Ratio(%) OBM systempresentshighviscosity,lowfiltratevolumeandhighdam- free-WBM PAG-WBM silicate-WBM age.It isthenrecommendedtouse it in upperlayersbut notin Albiantop 52 79 98 98 reservoir. Barremianbottom 51 77 98 98 Turoniantop 53 76 98 99 Practically, drilling engineers need to optimise formulations in oppositewaysdependingonwhethertheydealwithuppergeological layers or reservoir formation. In the former case, minimum filtrate, Table6 optimalviscosityandhighdamagearerequiredinfluidformulation Pelletdispersiontestwithpolyalkyleneglycol-water-basedmuds(PAG-WBM)andoil- selection. In the latter one, low damage is the principal selection basedmuds(OBM)systems. parameter.Generally,asilicatesystemisnotusedinreservoir.Silicate Sample %Cuttings %Cuttings %Cuttings %Cuttings %Cuttings reacts readily with Ca++ and Mg++ ions. High concentrations of PAGtest1 PAGtest2 PAGtest3 average(PAG) OBM divalent ions will deplete the effective silicate concentration and Albiantop 60 62 63 62 99 decreaseitsinhibitiveperformance.However,thein-situgelationof Barremianbottom 61 63 65 63 98 silicateshasbeenemployedtoreduceaqueousfluidflowinoil-and Turoniantop 61 63 62 62 98 gas-bearingformations. Evaluation made on the cuttings samples of HMD, based on laboratory tests, showed a high percentage of inhibition with the (Table8).Thisresultisprobablyrelatedtoasurfaceaccumulationof silicate system in comparison with glycol and PHPA systems. The PHPA, reducing the flow through more compact porous Berea studyofthemechanismsofinhibitionofpolymersshowsthatPHPA sandstone.Byusingapelletandinthenewfiltrationtest,afiltrate inhibitsclaydispersionbyencapsulationandactsbystericeffectbut, volumeprovokesthemaximumdamage(Table8andFig.9)dueto for glycol and silicate, electrokinetic effect governs inhibition swelling(clay–waterinteraction),soliddisintegrationandplugging mechanisms. phenomenathroughporousmedia.Thecomparisonofdamagefor ThefieldtestsrealisedonfourwellsintheHassiMessaoudfield both silicate and PAG systems, shows that the PAG system gives withasilicatesystemshowarateenhancementandareductionof maximumfiltrateandminimumdamagebyusingapelletandBerea lossphenomenaandshaleproblems(Khodja,2008).Inthisformation, characterisedbyitsaveragereactiveandrichfracturing,itisdesirable toformulateasilicatedrillingfluidwithaperfectinhibitivecapacity, ideal rheological properties and good filtration control. After labo- ratoryandfieldtests,andcollaborativeworkwithoilanddrillingfluid servicecompanies,anoptimalformulationofasodiumsilicate/KCl/ specificpolymerdrillingfluidsystemwasdeveloped. Thedrillingrate(ROP)ispracticallyidenticalforallcaseswiththis silicate drilling fluid (7.23–7.49m/h). One of the key factors to maintain acceptable rheological properties and filtration control characteristheproperproportionofeachadditive:KClandsilicate. This choice of silicate and KCl concentrations is a function of some parameterswhichcannotbeoptimisedonthelaboratoryscale,such asreactivityandsizeofshale,drillingparameters(WOB:weighton bit,ROP,mudpressure,bittype...).Infourdrilledwells,theproportion of silicate ranges from 40 to 74kg/m3, and KCl concentration decreasesfrom14%inthefirstwellto4.5%inthethirdone.According to McDonald et al. (2002), this system presents high inhibition, offering Health, Security and Environment benefits over traditional OBM. Moreover, based on the review of various drilling fluid candidates, it was determined that a silicate-based system was the Fig.9.Mudsystemfiltratevolumevs.compactionforce. bestchoice. Fig.10.Filtrationcellforformationdamageevaluation.
Description: