Astron.Nachr./AN32X(200X)X,XXX–XXX Sgr A* as probe of the theory of supermassive compact objects without event horizon L. VEROZUB 6 KharkovNationalUniversity,Kharkov,Ukraine 0 0 2 Receiveddatewillbeinsertedbytheeditor;accepteddatewillbeinsertedbytheeditor n a J 9 2 Abstract. Inthe present paper some consequences of the hypothesis that the supermassive compact object in the Galaxy centrerelatestoaclassofobjectswithouteventhorizonareexamined.Thepossibilityoftheexistenceofsuchobjectswas 1 substantiatedbytheauthorearlier.Itisshownthataccretionofasurroundinggascancausenuclearcombustioninthesurface v layerwhich,asaresultofcomptonizationofthesuperincumbent hotterlayer,maygiveacontributiontotheobservedSgr 2 6 A*radiationintherange1015 1020Hz.Itisfoundacontributionofthepossiblepropermagneticmomentoftheobjectto ÷ 6 theobservedsynchrotronradiationonthebasisofBoltzmann’sequationforphotonswhichtakesintoaccounttheinfluence 1 ofgravitytotheirmotionandfrequency.WearriveattheconclusionthatthehypothesisoftheexistenceintheGalaxycentre 0 oftheobjectwithsuchextraordinarygravitationalpropertiesatleastdoesnotcontradictobservations. 6 0 Keywords:densematter,blackholephysics,gravitation,accretion,radiationmechanism:non-thermal / h p - 1. Introduction fieldequationsofgravitation(Verozub1991;Verozub2001). o Accordingtothephysicalprinciplesfoundingtheequations, r t An analysis of stars motion in the Galaxy centre gives gravity of a compact object manifests itself as a field in s a strong evidence for the existence here of a compact object Minkowski space-time for a remote observer in an inertial v: with a mass of (3 4)106M⊙ associated with the radio frameofreference,butbecomeapparentasaspace-timecur- ÷ i source Sgr A* (Genzeletal.2003a; Scho¨deletal.2003; vature for the observer in comoving reference frames asso- X Ghezetal.2003; Ghezetal.2005). There are three kind ciated with particles freely moving in this field . If the dis- r of an explanation of observed peculiarities of the object tance from a point attractive mass is many larger than r , a g emission: the physical consequences, resulting from these equations, –gasaccretionontothecentralobject-asupermassiveblack are very close to General Relativity results. However, they hole(SMBH)(Coker&Melia2000;Narayan&Yi1995), areprincipallyotheratshortdistancesfromthecentralmass –ejectionofmagnetisedplasmafromanenvironmentofthe . The spherically- symmetric solution of these equations in SchwarzschildradiusoftheSMBH(Falcke&Markoff2000; Minkowski space-time have no event horizon and physical Melia&Falcke2001), singularityinthecentre. – explanations, based on hypotheses of other nature of the Since these gravitational equations were successfully central object ( clusters of dark objects (Maos1998) , a tested by post-Newtonianeffectsin the solar system and by fermion ball (Viollier2003), boson stars (Torresetal.2000; thebinarypulsarPSR1913+16(Verozub&Kochetov2000), Yuan,Narayan&Rees2004). and the stability of the supermassive configurations pre- dicted by them was sufficiently strictly substantiated In the present paper some consequencesof the assump- (Verozub&Kochetov2001a), it is of interest to investigate tion that emission of Sgr A* caused by the existence in the possibility of the existence of such a kind of an object theGalaxycentreofasupermassivecompactobjectwithout in the Galaxy centre as an alternativeto the hypothesisof a eventhorizonareexamined.Theexistenceofsuchstablecon- supermassiveblackhole. figurationsofthedegeneratedFermi-gasofmasses102 1010 ÷ ThegravitationalforceofapointmassMaffectingafree- M⊙,radiusesofwhicharesmallerthantheSchwarzschildra- fallingparticleofmassmisgivenby(Verozub1991). diusr ,isoneofconsequences(Verozub1996)ofthemetric- g Correspondenceto:[email protected]; F = m c2C′/2A+(A′/2A 2C′/2C)r·2 , (1) [email protected] − − (cid:20) (cid:21) L.V.Verozub:SgrA*asprobeofthetheoryofsupermassivecompactobjectswithouteventhorizon 1 where We assume hereforcalculationsthatthe massM of the A=f′2/C, C =1 r /f, f =(r3+r3)1/3. (2) centralobjectisabout3106M⊙. TheradiusR oftheobject − g g canbefoundfromthedistributionofthedensityρmofmatter insidetheobject.Itcanbeobtainedbysolvingtheequations Inthisequationristheradialdistancefromthecentre,r = g 2GM/c2, G is the gravitational constant, c is the speed of ofthehydrodynamicalequilibrium: lightatinfinity,theprimedenotesthederivativewithrespect dp /dr =ρ g , dM /dr=4πr2ρ , (4) m m m r m tor. p =p (ρ ). · m m m Forparticlesatrest(r =0) IntheseequationsM isthemassofmatterinsidethesphere r of the radius r, g = F/m is the force (3) per unit of F = GmM 1 rg (3) mOarss, r = 2GM /mc2 is the Schwarzschild radius of the − r2 " − (r3+rg3)1/3# sphere g and p =r p(ρ ) is the equation of state of mat- r m O ter inside the object. The equation of state, which is valid Fig. 1 shows the force F affecting particles at rest and for the density range of (8 1016)gcm−3, is given by particles,freefallingfrominfinitywithzeroinitialspeed,as ÷ (Harrisonetal.1965) thefunctionofthedistancer =r/r fromthecentre. g n p = m ρ c2, (5) m m ∂n /∂ρ − (cid:18) m m (cid:19) whereinCGSunits −4/9 6 1 n =Q ρ 1+Q ρ9/16 , (6) 2 m 1 m 2 m 4 (cid:16) (cid:17) Q = 6.02281023 andQ = 7.748310−10 . Forthe gravi- 1 2 2 tationalforceunderconsiderationthere aretwo typesof the 0 solutionsofEqs.(4).Besidesthesolutionsdescribingwhite dwarfsandnewtronstars,therearesolutionswithverylarge F −2 masses.Forthemassof3106M⊙ theobjectradiusresulting −4 fromEqs.(4)isabout0.4R⊙ =0.034rg =31010cmwhere r istheSchwarzschildradiusoftheobject. −6 g Itseemsatfirstglancethataccretionontotheobjectwith −8 a solid surface must lead to too large energy release which −10 contradicts a comparatively low bolometric luminosity ( 0 2 4 6 8 10 1036 erg s−1 ) of Sgr A*. However, it must be taken in∼to r / r g account that the radial velocity of test particles free falling frominfinityisgivenbytheequation(Verozub1991) Fig.1.Thegravitationalforce(arbitraryunits)affectingfree- fallingparticles(curve1)andparticlesatrest(curve2)near 1/2 C apointattractivemassM. vff =c (1 C) . (7) A − (cid:20) (cid:21) Thevelocityfastdecreasesatr <r .Asaresult,thevelocity g ItfollowsfromFig.1thatthegravitationalforceaffecting atthesurfaceisonlyabout3.3108cms−1.Consequently,at free fallingparticleschangesits sign atr 2r . Although · we still never observed particles motion a≈t distgances of the the accretion rate M = 10−7 M⊙ yr−1 the amount of the · orderofr ,wecanverifythisresultforveryremoteobjects releasedenergyMv2/2isequalto3.41035ergs−1. g in the Universe – at large cosmological redshifts . Indeed, considerasimplemodel-homogeneousselfgravitatingdust- 2. Atmosphere ballsofdifferent-sizeradiusesr .Theforceactingonparti- b cles at the surface of such a ball is given by Eq. (1) where, There are reasons to believe that the rate of gas accretion inthiscase,r = (8/3)πc−2G̺ r3 istheSchwarzschildra- g b b onto the supermassive object in the Galaxy centre due to diusof the balland ̺ is its density.Ifthe balldensityis of b star winds from surrounding young stars is of the order of t(he 1o0rd−e2r9gofcmth−e3o)b,saenrdvetdhedeitnssritaydioufsmratitsernionttlhesesUthnaivnetrhsee 10−7 M⊙ yr−1 (Coker2001). Therefore,if the objecthasa ∼ b solidsurface,itcanhaveanatmosphere,basicallyhydrogen. radius of the observed matter ( 1028cm ), then r r . ∼ b ≤ g During10Myr (anestimatedlifetimeofsurroundingstars) It follows from Fig. 1 that under the sircumstances the ra- dial accelerations F/m of speckle particles on the ball sur- the mass Matm of the gaseous envelope can reach 10M⊙. If the density of the atmosphere is ρ , and the pressure is facearepositive.Therepulsiveforcegiveriseadeceleration a p = 2ρ kT/m , where k is the Boltzmann constant,T is of the expansion of such a selfgravitating dust-like mass ( a a p theabsolutetemperatureandm istheprotonmass,thenthe Verozub2002 ). More accurate calculations at the redshift p heightofthehomogeneousatmosphereis 0 < z 1 (Verozub&Kochetov2001b) give a good ac- ≤ cordancewithobservationdata(Riessetal.1998). h =2p /ρ g (R)=kT/m g (R), (8) a a a m p m 2 Astron.Nachr./ANXXX(200X)X whereg (R)isg atr =R.AtthetemperatureT =107K m m 600 theatmosphereheighth 108cm.Theatmosphericdensity a ρ =M /4πR2h 1∼03gcm−3.Undersuchacondition, a atm a ∼ ahydrogencombustionmustbeginalreadyinourtime. Ofcourse,theaccretionrateinthepastcouldbeofmany 3D 400 - l m 1 ordersmoreifsurroundingstarshavebeenbornina molec- c ular cloud which was located in this region. (See a discus- @rg l2 sion in (Genzeletal.2003a; Ghezetal.2005). In this case 200 l 3 thecombustioncouldbeginmanytimeagoandmustbemore l 4 intensive. l5 A relationship between the temperature and density can 0 befoundfromthethermodynamicalequilibriumequations 1107 3107 5107 7107 T@KD 1 dL M˙ c2 dS 4πr2ρ drr =ǫpp+λM −T dt, (9) Fig.2.Relationshipbetweentemperatureandpressureofthe a atm homogeneousatmosphereforthevaluesoftheparameterλ: where λ = 1,λ = 1/6,λ = 10−2,λ = 10−3,λ = 10−4 at 1 2 3 4 5 ac d M =3106M⊙andM˙ =10−7M⊙yr−1 L =4πr2 T4. (10) r 3κρ dr a In these equations M˙ is the rate of the gas accretion , ǫpp ρa(R) = ρ0, T(R) = T0, Lr(R) = 0. At T0 = 107K the istherateofthenuclearenergygenerationperunitofmass, luminosity L = 2.41031erg s−1 at ρ0 = 102g cm−3 and λ is the portion of the energythermalized at accretion, S is L=5.61033ergs−1atρ0 =103gcm−3. entropy,andaistheradiationconstant.Fortheproton-proton Thetemperatureatthesurfacecannotbemuchmorethan cyclethevalueofǫppcanbetakentoafirstapproximationas the above magnitude. At the temperature T0 = 3107K and (Schwarzschild1977;Bisnovatyi-Kogan2001) ρ =103gcm−3theluminosityL=1.01036ergs−1,i.e.is 0 avalueoftheorderoftheobservedbolometricluminosityof −2/3 T SgrA*. ǫ =2.5104X2 pp H 109 Due to gravitational redshift a local frequency (as mea- (cid:18) (cid:19) (11) −1/3 suredby a localobserver)differsfromthe onefor a remote T exp 3.38 ergg−1s−1, observerbythefactor1 × "− (cid:18)109(cid:19) # (1+z )−1 =√C, (15) whereX isthehydrogenmassfractionwhichisassumedto g H beequalto0.7,and wherethe functionC = C(r) is definedby Eqs.(2). Fig. 3 κ=0.2(1+X ) showsthedependencyoftheredshiftfactoronthedistanced H (12) fromthesurfaceoftheobject. +41024(1+X )ρ T−3.5 cm2g−1 H a The difference between the local and observed fre- isthe absorptioncoefficientcausedbytheThomsonscatter- quency can be significance for the emission emerging from ingandfree-freetransitions. small distances from the surface. For example, at the In the stationary case for the homogeneous atmosphere above luminosity L = 5.61033ergs−1 the local frequency wehave of the maximum of the blackbody emission is equal to 5.71014Hz. The observed frequency of the maximum is · acT4 Mc2 equal to 2.71012Hz. The correspondingspecific luminosity =ǫ +λ . (13) 3κρ2h2 pp M is 21021ergs−1Hz−1.AtL=1036ergs−1thefrequency a a atm ∼ Fig. 2 showsthe relationshipbetweenT andρ forsev- 1 Thesimpestway toshow itisfollows. Fromtheviewpoint of a eralvaluesoftheparameterλ.Itfollowsfromthefigurethat aremoteobserver,theenergyintegralofthemotionofaparticlein the hydrogenburningcan occuratthe densityof 102 103 spherically-symmetricfieldis(Verozub1991) gcm−3. ÷ ∂ ∂ Aluminosityfromtheburninglayeranddensitydistribu- r˙∂Lr˙ +ϕ˙∂Lϕ˙ −L=E tioncanbefoundbysolvingthedifferentialequationssystem where istheLagrangefunction dM dp L drra =4πr2ρa, dra =ρag(R), = mc c2C Ar˙2 Bϕ˙2 1/2 (14) L − − − dL dT 3κρ L drr =4πr2ρaǫpp, dr =−16πacar2rT3, andEisth(cid:0)eenergyofthepartic(cid:1)le.Intheproperframeofreference oftheparticletheaboveequationstaketheform: =E,and = where Mra is the mass of the spherical layer from the sur- mc2√C.Photonscanbeconsideredasapartic−leLsoftheeffecLtive facetothedistancerfromthecentretheobject.Thebound- p−ropermassmeff = hν/c2.Ityieldstherelationshipν√C = ν∞, aryconditionsonthesurfaceareoftheform:Mra(R) = 0, whereν∞isthefrequencyatinfinity. L.V.Verozub:SgrA*asprobeofthetheoryofsupermassivecompactobjectswithouteventhorizon 3 where 250 3K (x)+K (x) 3 1 φ=3+x 1 4K (x) − 200 (cid:18) 2 (cid:19) (18) 3K (y)+K (y) 3 1 +y 1 , 4K (y) − 150 (cid:18) 2 (cid:19) g 1+z x = mec2/kT,y = mpc2/kT andKj (j = 2,3)isthe ith 100 ordermodifiedBesselfunction,me istheelectronmass The sound velocity v as a function of r can be found s (Service1986)as 50 1/2 ΓP v =c , (19) 0 s ρc2+P 0 0.5 1 1.5 2 2.5 3 (cid:18) (cid:19) d / R where ρ = m n is the gas (fully ionised hydrogenplasma) p Fig.3. The gravitational redshift close to the object surface density.Theadiabaticindex of the mass M = 3106M⊙ and radius R = 0.04rg as the functionofthedistancedfromthesurface(inunitsofR). Γ=c /c , (20) p v where of the maximum is equal to 21015Hz , the observed fre- quency is equal to 9.71012Hz, and the specific luminosity c =5ςΘ−1 (ς2 1)Θ2), p is 11023ergs−1Hz−1.Thesemagnitudesareclosetoob- − − ∼ cv =cp 1, (21) servationdata.(Melia&Falcke2001;Falckeetal.2000) − ς =K (Θ−1)/K (Θ−1), 3 2 3. Peculiarityofaccretion andΘ=kT/m c2.Then e Themainpeculiarityofasphericalsupersonicaccretiononto supermassive objects without event horizon is the existence P Θ = , (22) of thesecondsonic point– ina vicinityoftheobjectwhich ρc2+P η is not connected with hydrodynamicaleffects. The physical where η = K (Θ−1)/K (Θ−1). Having used results by reason is that as the sound velocity v in the incident flow 3 2 s Pressetal.1986 Service (Service1986) have obtained the growstogetherwiththetemperature,thegasvelocityv,like followingpolynomialfittingforΓandP/(ρc2+P): the velocity of free falling particles (7 ) , begin to decrease closetor =r .Asaresult,theequalityv =v takeplaceat g s P/(ρc2+P)=0.03600y+0.0584y2 0.1684y3, somedistancers >R,notfarfromthesurfaceoftheobject. − According to the used gravitation equations Γ=(5 1.8082y (23) − (Verozub1991), the maximal radial velocity of a free +0.8694y2 0.3049y3+0.2437y4), − fallingparticledoesnotexceed0.4c.Therefore,theLorentz- factor is nearly 1, and to find rs we can proceed from the where y = Θ/(0.36 + Θ). We assume that M˙ = simplehydrodynamicsequations: 10−7M⊙ yr−1 andthatatthedistancefromthecentrer0 = 1017cm the velocity v(r ) = 108cm s−1 and the tempera- 0 ture T(r ) = 104K . Under these conditions r = 8R. At · 0 s 4πr2v =M, vv+n′/n=g this point the solutions of the equations have a peculiarity. ε ′ n′ (16) The temperature T(rs) 1010K. The value of rs weakly P =0. dependens on M˙ , howev∼er, it is more sensitive to physical n − n (cid:16) (cid:17) conditionsat large r. For example, it varies from the above Intheseequations.nistheparticlesnumberdensity,εis magnitude8Rupto22RatthetemperatureT(r )=106K. 0 the energydensityof the gas, g = F/m is the gravitational The postshock region stretches from r to such a depth s acceleration. The gas pressure P is taken as 2nkT, and the where protons stopping occurs due to Coulomb collisions primedenotesthederivativewithrespecttor. Therefore,as withatmosphericelectrons.(Wedonottakeintoaccountcol- inthecaseoftheBondiaccretionmodel,weneglectradiation lective effectsin plasma ). The changein the velocityv of p pressure,anequipartitionmagneticfieldwhichmayexistin infallingprotonsinplasmaisgivenbythesolutionofthedif- theaccretionflow,viscosityandlossofenergyduetoradia- ferentialequation tion.However,theenergydensityoftheinfallinggasin(16) iscalculatedmoreaccurate(Coker&Melia2000): dv ε=mpc2n+φnkT, (17) vp drp =g+w, (24) 4 Astron.Nachr./ANXXX(200X)X wherewisthedecelerationofprotonsduetoCoulombcolli- The first-order moment equation of the standard transfer sions. Thismagnitudeis of the form(Alme&Wilson1973; equation for a spherically- symmetric gray atmosphere can Li&Petrasso1993;Deufel,Dullemond&Spruit2001) bewrittenas(Schwarzschild1977) 4πNe4 ′ 2 w = f(x ) lnΛ. (25) H + H +cκρU jρ=0, (33) e − m m v r − e p p In this equation e is the electron charge, N is the particles whereU isthedensityoftheradiationenergy,jandκarethe number density. At r < 1.3R the last magnitude is taken meanemissionandadsorbtioncoefficients,respectively. hereasthequantityn = ρ /m resultingfromthesolution Eqs.(32)and(33)yield a a a ofEqs. (14),andastheparticlesnumberdensityin afree- fallinggas L′4πr2ρ=(j cκU). (34) r − M˙ Therefore,theappropriateforthepurposeofthispaperequa- n= , (26) 4πr2v m tionoftheenergybalanceisoftheform ff p atr >1.3R,wheren>na.Themagnitude ǫ =j cκU. (35) cul − 3 (kT)3/2 lnΛ=ln (27) To a first approximation, j and κ can be taken as ( 2√πe3 N1/2 Bisnovatyi-Kogan2001) is the Coulomblogarithm.The functionf(x ) is taken here e j =51020ρT1/2+6.5UT as (36) +2.3TB2 ergg−1s−1 f(xe)=ψ(xe) xe(1+me/mp)ψ′(xe), (28) and − where κ=0.4+6.41022ρT−7/2 (37) x = mevp2 1/2, (29) +6.5c−1Tγ +2102B2T−3 cm2g−1, e 2kT ! where T = (U/a)1/4 is the radiation temperature and B γ ψistheerrorfunction is a possible magnetic field close to the object surface (See Section 5). Terms in (36) describe free-free, Compton and 2 xe ψ(x )= exp( z2dz (30) synchrotronemission, respectively.Terms in ( 37 ) describe e √π Z0 − theinverseprocesses,andthefirsttermtakesintoaccountthe andψ′(x )isthederivativewithrespecttor. Thomsonscattering. e Thevelocityvff iscloseto thegreatestpossiblevelocity The rate ǫcul of the energy release due to Coulomb col- of the infalling gas. It leads to the minimally possible dis- lisions per unit of mass is given (Alme&Wilson1973) by tance of a point of the full proton stopping from the object surface. A numerical solution of Eq. ( 24 ) shows that this 4πe4 magnitude is equal to (0.3 0.4)R. The particles number ǫcul =f(xe) lnΛ. (38) densityinthisregionis 10÷14cm−3 (Weneglectsomedif- mpvp ∼ ferencebetweentheheightofprotonsandelectronsstopping IftoneglectadsorbtiontermsinEq.(35)andthegrav- (Bildstenetal.1992)).Abovethisregionthemostpartofthe itationinfluenceinsidethestoppingregion, itispossibleto kineticenergyprotonsisreleased. obtain some simple analytic relationships between the tem- The distribution of the temperature T(r) in this region perature T and the energy E of a decelerating photon. In- p can be obtained from an equation of the energy balance. deed,the value of N at the distance r = 6R is of the order (Suchaquestionfornutronstarshasbeenconsideredearlier of108cm−3.Atthetemperatures 1010Kthefree-freeand by Zel’dovich & Shakura (1969) , Alme & Wilson (1973), Compton radiations are predomin∼ated. Taking into account Turollaetal. (1994),Deufeletal.(2001),and,formagnetic thatx 1,weobtain e whitedwarfs,byWoelk&Beuermann(1992)).Supposethat ≪ allprotonsstoppingpowerisconvertedintoradiation.LetH 4 m 3/2 E 3/2 f(x ) e p , (39) be the radiativefluxand Lr = 4πr2H – the fluxtroughthe e ≈ 3√π (cid:18)mp(cid:19) (cid:18)kT(cid:19) sphereoftheradiusr.Thentheenergybalancemeansthat whichyieldstherateoftheenergyreleaseperunitofmass: L′ =4πr2ǫ ρ (31) r cul NE where ǫcul is the rate of the energyrelease due to Coulomb ǫcul =ξT3/2p, (40) collisions,ρ=m N isthegasdensityandtheprimedenotes p where thederivativewithrespecttor.Theleft-handsidein(31)is L′ =4πr2 H′ + 2H . (32) ξ = 16√πmee4 . (41) r r 3√2m2k3/2 (cid:18) (cid:19) p L.V.Verozub:SgrA*asprobeofthetheoryofsupermassivecompactobjectswithouteventhorizon 5 Then, if the largestcontributionprovidesfree-freeradiation 1010 ( the field B is weak ) , it follows from the equation of the B = 0 energybalancethat B = 103 (R/r)3 G T =(δ E )1/2 (42) B = 104 (R/r)3 G 1 p 109 whereδ1 =2.361024K2erg−1.Forexample,atr =6Rthe K ] ) protonenergyEp = 4.810−6ergwhichyieldsthetempere- T [ tculoreseTto=r3=.3110.49KR., SainshcearEppdriospaifnastthedetcermeapseirnagtufruentcatkioens Log ( 108 placeatthedistance 0.4Rfromthecentre. ∼ Ifthemagneticfieldissufficientlystrong,themaincontri- butionintheenergybalanceprovidessynchrotronradiation. 107 In this case the relationship between the temperature T and theenergyE oftheprotontakestheform 0.5 1 1.5 2 p r [cm] x 1011 2/5 T = δ NEp (43) Fig.4. ThetemperatureT asthe functionof r inside there- 2 B2 gion of protons stopping for the object of the radius R = (cid:18) (cid:19) 0.04r . The boundary conditions are: at the distance from whereδ2 =1024K5/2erg−1cm3andB 6=0. the sugrface 5R the luminosity L0 = 1036erg s−1, the tem- Ingeneralcase,assumingthatatthedistancer0 =6Rthe perature T = 5.4109K, the velocity of protons v = luminosity L(r0) = 1036ergs−1 , the energyflux U(r0) = 2.32109cm0s−1. The plots for three value of the magp0netic L(r )/4πr2candthe protonsvelocityv (r ) = v (r ), we 0 0 p 0 ff 0 fieldBareshown. findfromEq.(35)thatthetemperatureT(r )=5.4109K. 0 On the other hand, if the absorption is not ignored, Eq. (35)yieldsthedifferentialequation To find the temperature distribution from the surface to ∂Φ(r,T)/∂r distances d R more correctly, equations of the structure T′ = , (44) ∼ ofloweratmosphere,accretionandenergybalanceshouldbe −∂Φ(r,T)/∂T solved simultaneously. It can affect the value of the atmo- whereΦ(r,T) = ǫcul j+cκU.Asimultaneouslysolving spheric density at the surface. However, as it was noted in − ofthisdifferentialequationtogetherwiththeequations Section2,ourknowledgeofthismagnitudeinitiallyisrather uncertain.Thedensityofρ 103gcm−3(whichcorresponds 1U′ =κ Lr tothetemperatureT 107∼K)isthemostprobablesincean 3 4πr2c ∼ essentiallygreatervalueofthedensityortemperatureofthe and(31)allowstoobtainthedistributionT(r)atthedistances bottomatmosphereleadstotheluminositywhichcontradicts rwhereǫcul =0. theobservablebolometricluminosityofSgrA*.Atthesame 6 Fig.4showsatypicaltemperatureprofileintheregionof time the existence of a high temperature at distances where protonsstopping. protonsstoppingoccurshardlyis a subjectto doubt.There- Itisinterestingtoestimatethetemperatureatthesurface fore,thejumpofthetemperatureoftheorderof(102 103)K ÷ proceedingfromthesimplifyingassumptionthatallluminos- isaninevitableconsequenceoftheSgrA*modelundercon- ityofSgrA*(L 1036ergs−1)iscausedbynuclearburning sideration. ∼ at the surface and stopping of incidentprotonsat some dis- tance d R from the surface. Under such a condition, an ≤ effectivetemperatureT onthetopofthedenseatmosphere( 0 d 0.4R)isabout104K.Theradialdistributionofthetem- ∼ 4. Comptonization peratureinthediffusionapproximationcanbedeterminedby thedifferentialequation (T4)′ = 3χH, (45) AnemergentintensityI ofthelow-atmosphericemissionaf- 4b terpassagethroughahotsphericalhomogeneouslayerofgas s isa convolutionofthe PlankianintensityI oftheemission whereχ=κρ,b =5.7510−5ergcm−2K−4istheStephan- 0 s ofaburninglayer,andthefrequencyredistributionfunction Boltzmannconstant,andH istheradiativefluxwhichissup- Φ(s)ofs =lg(ν/ν ),whereν andν arethefrequenciesof 0 0 posedtoconstant.Itgivesapproximately theincomingandemergingradiation,respectively: χ T4 T4 = H∆r, (46) − 0 b where ∆r = 0.4R . Setting χ = 1 we find that at the sur- facethetemperatureisabout107Kwhichcoincideswiththe ∞ I(x)= Φ(s)I (s)ds. (47) magnitudeusedinSection2. 0 −∞ Z 6 Astron.Nachr./ANXXX(200X)X At the temperatureof the orderof 1010K the dimensionless 19 parameterΘ=kT/m c2 1.Undertheconditionthefunc- e ∼ tionΦ(s)canbecalculated(Birkinshaw1999)asfollows: -1LDz 18 Τ=0.5 H m e−ττk -1 17 + Φ(s)= P (s), (48) s k g Xk=0 k! HEr 16 Τ=0.1 where @LΝ +Τ=0.03 1 og 15 P (s)= ϕ(β )P(s,β )dβ . (49) L Τ=0.01 1 e e e Z(βe)min 14 15 16 17 18 19 20 In the last equations β is the electron-light velocity speed e Log@ΝHHzLD ratio, Fig.5. Emergent spectra of nuclear burning after comp- γ5β2exp( γ/Θ) ϕ(β )= − , (50) tonizationbyahomogeneoushotlayerfortheopticalthick- e ΘK (Θ−1) 2 nessτ =0.01, 0.03,0.1,0,5.Thecrossesdenotetheobser- γ =(1 β2)−1/2., vation data (Baganoffetal.2003; Porquetetal.2003) (The − e upperandlowerlimitsarespecified). epsp 1 (β ) = − (51) e min epsp+1 5. Transfer equation andsynchrotron radiation and 3 µ2 ofSgrA* P(s,β )= (1 β µ)−3 e 16γ4β − e e Zµ1 Some authors (Robertson&Leiter2002) find in spectra of 1 1+β µ′)(1+µ2µ′2+ (1 µ2)(1 µ′2) dµ, candidatesintoBlackHolessomeevidencesfortheexistence e × 2 − − (cid:18) (cid:19) ofa propermagneticfield of these objectsthatis incompat- iblewiththeexistenceofaneventhorizon.Inordertoshow es(1 β µ) 1 µ′ = − e − , (52) howthemagneticfieldnearthesurfaceoftheobjectinques- βe tion can manifests itself, we calculate the contribution of a magnetic field to the spectrum of the synchrotronradiation. 1 s 0 Weassumethatthemagneticfieldisoftheform µ1 = 1−−e−s(1+βe) s≤ 0 (53) ( βe ≥ R 3 B =B , (55) int 0 r 1−e−s(1−βe) s 0 (cid:18) (cid:19) µ2 =(1 βe s ≤0. (54) whereB0 =1.5104G. ≥ To find the emission spectrum from the surface vicin- Takingintoaccountscatteringupto3rdorder( m = 3) ity, the influenceof gravitationon the frequencyof photons an approximate emergent spectrum of the nuclear radiation and their motion must be taken into account. An appropri- aftercomptonizationhasbeenobtainedforthecasewhenthe ate transfer equation is the Boltzmann equation for photons temperatureatthesurfaceis107Kandρ=3103gcm−3.The which uses equationsof their motionin stronggravitational results are plotted in Fig. 5 for several values of the optical fields resulting from the used gravitation equations. (Such thicknessτ . an equation in General Relativity has been considered by It follows from this figure that the comptonization Lindquist(1966),Schmidt-Burgk(1978),Zaneet al. (1996) may give a contribution to the observed Sgr A* radia- andPapathanassiou&Psaltis(2000))TheBoltzmannequa- tion (Baganoffetal.2003; Porquetetal.2003) in the range tionisoftheform 1015 1020Hz. ÷ Itisnecessarytonotethatthetimescale∆tofavariable d F =St( ,t,x), (56) processisconnectedwith thesize ∆ofits regionbythere- dt F lationship ∆ c ∆t/(1+z ). For example,the variations g in the radiatio≤n intensity of 600 s on clock of a remote where = (t,x,p) is the phase-space distribution func- observer occur at the distanc∼e d 6 1.7R from the surface. tion, xF= (xF1,x2,x3) and p = (p1,p2,p3) are the photon Forthisreasonhigh-energyflashescanbeinterpretedaspro- coordinatesandmomentums,d/dtisthederivativealongthe cessesnearthesurfaceofthecentralobjects. photonpath,St( ,t,x)isacollisionsintegral.Thesolution It is possible that the diffuse, hard X-ray emission from of this equationFis related to the intensity I as = β−1I the giant molecular clouds of central 100pc of our Galaxy whereβ =2h4ν3c−2andν isthelocalfrequencyF. (Parketal.2004; Cramphorn&Sunyaev2002) is a conse- Inthestationaryspherically-symmetricfieldthedistribu- quenceofthe moreintensiveX-rayemission ofSgr A*due tionfunction = (r,µ,ν)whereµ = cosθ isthecosine F F tonuclearburstsinthepast. betweenthe directionof the photonandthe surfacenormal. L.V.Verozub:SgrA*asprobeofthetheoryofsupermassivecompactobjectswithouteventhorizon 7 Thepathderivativetakestheform where,K (1/Θ)is the modifiedBessel functionofthe sec- 2 ondorder, d ∂ ∂ ∂ν ∂ ∂µ F =v F + F + F , (57) dt ph(cid:18)∂r ∂ν ∂r ∂µ ∂r(cid:19) (ζ)= 4q1 1+ 0.4q2 + 0.53q3 e−1.8896ζ1/3, (65) M ζ1/6 ζ1/4 ζ1/2 wheretheradialcomponentofthephotonvelocitydr/dt = (cid:18) (cid:19) vph isgivenby(Verozub1996) ζ =2ν/3νbΘ2andνb =eB/2πmecisthenonrelativisticcy- clotronfrequency.Theparametersq ,q andq arefunctions 1 2 3 C Cb2 ofthetemperatureT.TheyhavebeenobtainedfromTable1 vph =c A 1− f2 , (58) of the above paper. The true adsorbtion opacity χth is sup- (cid:20) (cid:18) (cid:19)(cid:21) posedtoberelatedtoη viaKirchofflawasχ =η /B , th th th ν andbisanimpactparameter.Thefrequencyasafunctionofr whereB isthePlanckfunction. ν isgivenbytheequationν =√Cν∞.Thefunctionµ=µ(r) For the population of non-themal electrons we use satisfythedifferentialequation a power-law distribution ( O¨zel,Psaltis&Narayan2000 ) which is proportionalto γ−α where γ is the Lorentz factor dµ dθ =(1 µ2)2 , (59) andtheparameterαissupposedtobeequalto2.5.Forsuch dr − dr a distribution the emissivity of the non-thermal electrons is where(Verozub1996) approximatelygivenby dθ = cCb. (60) e2N ν −0.25 dr f2 η =0.53δ ϕ (Θ)ν , (66) nth 1 b c ν (cid:18) b(cid:19) In the above equations the geometrical relationship b2 = where r2(1 µ2)mustbetakenintoaccount. − Withregardstoallstatedabove,theBoltzmannequation 6+15Θ ϕ (Θ)=Θ (67) alongthephotonpathscanbetakenintheform 1 4+5Θ d 1 andthefractionδ oftheelectronsenergyinthethermaldis- v F = (η+σJ) (χ+σ) . (61) ph dr β − F tributionissupposedtobetheconstantinradiusandequalto 0.05. Theright-handsideofthisequationistheordinarysimplified The adsorbtion coefficient for non-thermal electrons is collisionsintegralforanisotropicscattering(Mihalas1980) takenas intermsofthefunction .Inthisequation F e2N ν 2.75 1 χ =1.371027δ ϕ(θ)ν . (68) J =(1/2) β dµ, (62) nth cν b ν F (cid:18) b(cid:19) Z−1 ForacorrectsolutionofEq.(61)isnecessarytotakeinto isthemeanintensity,ηisthesynchrotronemissivity,χisthe accountthatfromthepointofviewoftheusedgravitational trueadsorbtionopacity,σistheThomsonscatteringopacity. equationstherearethree typesofphotonstrajectoriesin the If (r,µ) is a solutionof the integro-differentialequa- Fν spherically-symmetricgravitationfield.ItcanbeseeninFig. tion(61),thespecificradiativefluxis 6.Thefigureshowsthelocusinwhichradialphotonveloci- 1 tiesareequaltozero.Itisgivenbytheequation H =(1/2) β (r,µ)µdµ (63) ν ν Z−1 F b= f . (69) Therefore,bysolvingEq.(61)forallparameters0<b< √C ∞ anemergentspectrumofSgrA*canbeobtain.Foranumeri- The minimal value of b is b = 3√3r /2. The corre- calsolvinganiterativemethodcanbeusedwithnoscattering cr g spondsing distance from the centre is r = √319r /2. The asastartingpoint. cr g photonswith an impact parameter b > b , the trajectories Weassumethatatthesurfaceoftheobject(duetononsta- cr ofwhichstartatr < r (type1inFig.6),cannotmoveto tionaryMHD-processes)andalsohigher,intheshockregion, cr infinity. It can do photons with b > b , if their trajectories asmallfractionsoftheelectronsmayexistinanon-thermal cr startatr >r (type3),andallphotonswithb<b (type distribution. Therefore,following Yuan, Quatert & Narayan cr cr 2). (2004),wesettingη =η +η andχ=χ +χ ,where th nth th nth In order to find the solutions of equation (61), de- indexesthandnthrefertothemalandnonthemalpopulation, F+ scribingthe outgoingemission providedby photonsof type respectively. 2,theboundarycondition (r = R,ν,µ) = 0canbeused. There is a fitting function for the synchrotron emis- F Theboundarycondition (r ,ν,µ) = 0allowstofind sivity of the thermal distribution of electrons which F → ∞ the solutions , describingthe emission ingoingfromin- is valid from T 108K to relativistic regimes ( F− ∼ finity.Thevaluesofthissolutioncanbeusedasaboundary Madehavan,Narayan&Yi1996): conditionstofindtheoutgoingemissionprovidedbythepho- Ne2ν tonsoftype3(Zaneetal.1996).Ofcourse,thevalueofthe η = (ζ), (64) th √3cK2(1/Θ)M functionF = β−1Bν,whereBν isthePlanckfunction,can 8 Astron.Nachr./ANXXX(200X)X It follows from the figure that the proper magnetic field 10 canmanifestitselffortheremoteobserveratthefrequencies largerthat(2 4)1012Hz–inIRandX-rayradiation. ÷ 8 ItfollowsfromFigs.5 and7 thatthe perculiarityofSgr A*spectrumatν >1014Hzcanbeexplainedbybothphys- ical processes at the object surface and by the existence of 6 a non-thermal fraction of electrons in the gas environment. g b / r We do not know at the moment which of these sources is 4 3 predominant.However,theopportunityoftheexplanationof 1 flareactivityofSgrA*byphysicalprocessesatthesurfaceis ratherattractive. 2 2 ThemeasurementsofthepolarisationofSgrA*emission offer new possibilities for testing of models of this object. 0 0 1 2 3 4 5 6 7 AccordingtoobservationsbyBoweretal.(2003)atthefre- r / r quency 2.31011Hz, the Faraday rotation measure (RM) is g 2106radm−2. In our case at this frequency the optical Fig.6.Thefunctionb(r).Thereare3typesofphotonstrajec- ≤ depth τ of the atmosphere become equal to 1 at a distance tories:1)Theimpactparameterb>b ,thetrajectorybegins cr of r 7r from the centre. The influence of the inter- atr <rcr,2)b<bcr,3)b>bcr,thetrajectorybeginsatr > nal mmiangn≈etic figeld is insignificant at here. The value of the r . cr RM is 107radm−2. This magnitudeis notdifferedfrom ∼ that obtained in the model by Yan, Eliot & Narayan (2004) based on the SMBH - theory. Taking into account that we beusedasaboundaryconditiontofindemissionfromlarge knowthe distributionofthe densityandmagneticfield very opticaldepths. approximately,we cannotsay that the obtained value of the Fig.7showsthespectrumofthesynchrotronradiationin RMcontradictobservationdata. thebandof1011 21018Hzforthreecases: –forthemagneti÷cfieldB (55)oftheobjectatthegibrid At increasing of the frequency the value of rmin de- int creases, and influence of the proper magnetic field must in- distribution of electrons with the parameter δ = 0.05 (the creasebecausetheradiationcomefrommoredepthoftheat- dashedline), moshere.Atfrequenciesmorethan21012Hztheatmosphere –forthesumofB andanexternalequipartitionmagnetic int becomethetransparentcompletelytothesynchrotronradia- fieldB = (M˙ v r−2)1/2 whichmayexistintheaccretion ext ff tion. Therefore, the full depolalization of the radiation may flow(Coker&Melia2000)(thesolidline), givesomeevidencefortheexistenceofamagneticfieldclose – for the magnetic field B without non-themal electrons int thesurface. (thedottedlinewhichatthefrequencies<1014Hzcoincides with the dash line). in the presence of the proper magnetic field 6. Conclusion The clarification of nature of compact objects in the galac- 1025 ticcentresisoneofactualproblemsoffundamentalphysics δ=0.05, B=Bint+Bext and astrophysics.The results obtained above,of course, yet δ=0, B=B +B −1Hz ] ) δ=0.05, Bi n=t Binetxt dthoeynosthaolwlowthatot tdhreawpotshseibwilietlyl,-dinevfiensetdigcaotendclhuesrieo,nas.tHlaoswt,deoveesr −1Erg s 1020 sntoutdcyo.ntradict the existing observations, and require further L [ ν g ( Lo References 1015 Alme,M.,Wilson,J.:1973,ApJ186,1015 12 14 16 18 Log ( ν [ Hz ] ) Baganoff,F.,Maeda,Y.,Morris,M.etal.:2003,ApJ591,891 Birkinshaw,M.:1999,PhysicsReports310,97 Fig.7.Thespectrumofthesynchrotronradiation.Thedashed Bildsten,L.,Salpeter,E.,Wasserman,I.:1992ApJ384,143 line shows the luminosity Lν for a remote observer for the Bisnovatyi-Kogan, G.: 2001 Stellar Physics, v. I and II, Springer possible proper magnetic field Bint. The parameterδ of the Verlag hybrid distribution of electrons is equal to 0.05. The dotted Bower,G.,Write,M.,Falcke,H.&Backer,D.:2003,ApJ588,331 lineshowstheluminositywithoutnon-themalelectrons.The Coker,R.,Melia,F.:2000,ApJ534,723 Deufel,B.,Dulemond,C.,&Spruit,H.:2001,A&A377,955 solidlineistheluminosityatthepresencebothB andthe int Coker,R.:2001,A&A375,18 external equipartition magnetic field B . The short lines ext Cramphorn,C.&Sunyaev,R.:2002,A&A389,252 with the double arrows show observation data according to Falcke,H.,Markoff,S.:2000,A&A362,113 O¨zeletal(2000) Falcke,H.,Melia,F.&Agol,E.:2000,ApJ528,13 L.V.Verozub:SgrA*asprobeofthetheoryofsupermassivecompactobjectswithouteventhorizon 9 Genzel,R.,Scho¨del,R.,Ott,T.,etal.:2003a,ApJ594,812 Genzel,R.,Scho¨del,R.,Ott,T.etal.:2003b,Nature425,934 Ghez,A.,Salim,S.,Horstein,S.,etal.:2005,ApJ620,744 Ghez,A.,Ducheˆne,G.,Matthews,K.etal.:2003,ApJ586,127 Harrison,B.,Thorn,K.,Wakano,M.,&Wheeler,J.:1965,Gravita- tionTheoryandGravitationCollapse,Univ.ChicagoPress Lindquist,R.W.:1966,Ann.Phys.37,487 Li,C.&Petrasso,R.:1993,Phys.Rev.Lett.70,3063 Madehavan,R.,Narayan,R.&Yi,I.:1996,ApJ465,327 Maoz,E.:1998,ApJ494,181 Melia,F.,&Falcke,H.:2001,ARA&A39,309 Mihalas, D.: 1980, Stellar Atmospheres, Freeman and Company, SanFrancisco Narayan,R.&Yi,I.:1995ApJ444,231 O¨zel,F.,Psaltis,D.,&Narayan,R.:1996,ApJ541,234 Papathanassiou,H.&Psaltis,D.:2000,e-printastro-ph/0011447 Park,S.,Muno,M.,Baganoff,F.,etal.:2004,ApJ603,548 Porquet,D.,Predehl,P.,Aschenbach,B.etal.:2003,A&A404,17 Press,W.H.etal.:1986,NumericalRecipes:TheArtofScientific Computing,New-York,CambridgeUniv.Press Riess,A.:1998,AJ116,1009 Robertson,S.&Leiter,H.:2001,ApJ565,474 Service,A.:1986ApJ,307,60 Schwarzschild , M.: 1977, Structure and Evolution of the stars, Dover Scho¨del,R.,Ott,T.,Genzel,R.etal.:2003,ApJ596,1015 Schmidt-Burgk,J.:1978,APSS56,191 Torres,D.,Capozziello,S.&Lambiase,S.:2000,Phys.RevD62, 104012 Turolla,R.,Zampieri,I.,Colpi,M.,etal.:1996,ApJ496,35 Verozub,L.:1991,Phys.Lett.A156,404 Verozub,L.:1996,AN317,107 Verozub,L.&Kochetov,A.:2000,Grav.andCosm.6,246 Verozub,L.&Kochetov,A.:2001a,AN322,143 Verozub,L.:2001In:”Gravitation,CosmologyandRelativisticAs- trophysics”,KharkovUniv.,44 Verozub, L. & Kochetov, A.: 2001b In: ”Gravitation, Cosmology and Relativistic Astrophysics”, Kharkov Univ., 90 (e-print: astro-ph/0010596) Verozub,L.:2002AIPConferenceProc.624,371. Viollier,R.:2003,AN324,50 Woelk,U.&BeuermannK.:1992,A&A256,498 Yuan,F.,Quataert,E.,&Narayan,R.:2004,ApJ612,724 Yuan,Y-F.,Narayan,R.,&Rees,M:2004,ApJ606,1112 Zane,S.,Turolla,R.,Nobili,L.,&Erna,M.:1996,ApJ466,871 Zel’dovich, Ya. B. & Shakura, N. I.: 1969 Soviet. Astron. AJ 13, 175