ebook img

Sgr A* as probe of the theory of supermassive compact objects without event horizon PDF

0.24 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Sgr A* as probe of the theory of supermassive compact objects without event horizon

Astron.Nachr./AN32X(200X)X,XXX–XXX Sgr A* as probe of the theory of supermassive compact objects without event horizon L. VEROZUB 6 KharkovNationalUniversity,Kharkov,Ukraine 0 0 2 Receiveddatewillbeinsertedbytheeditor;accepteddatewillbeinsertedbytheeditor n a J 9 2 Abstract. Inthe present paper some consequences of the hypothesis that the supermassive compact object in the Galaxy centrerelatestoaclassofobjectswithouteventhorizonareexamined.Thepossibilityoftheexistenceofsuchobjectswas 1 substantiatedbytheauthorearlier.Itisshownthataccretionofasurroundinggascancausenuclearcombustioninthesurface v layerwhich,asaresultofcomptonizationofthesuperincumbent hotterlayer,maygiveacontributiontotheobservedSgr 2 6 A*radiationintherange1015 1020Hz.Itisfoundacontributionofthepossiblepropermagneticmomentoftheobjectto ÷ 6 theobservedsynchrotronradiationonthebasisofBoltzmann’sequationforphotonswhichtakesintoaccounttheinfluence 1 ofgravitytotheirmotionandfrequency.WearriveattheconclusionthatthehypothesisoftheexistenceintheGalaxycentre 0 oftheobjectwithsuchextraordinarygravitationalpropertiesatleastdoesnotcontradictobservations. 6 0 Keywords:densematter,blackholephysics,gravitation,accretion,radiationmechanism:non-thermal / h p - 1. Introduction fieldequationsofgravitation(Verozub1991;Verozub2001). o Accordingtothephysicalprinciplesfoundingtheequations, r t An analysis of stars motion in the Galaxy centre gives gravity of a compact object manifests itself as a field in s a strong evidence for the existence here of a compact object Minkowski space-time for a remote observer in an inertial v: with a mass of (3 4)106M⊙ associated with the radio frameofreference,butbecomeapparentasaspace-timecur- ÷ i source Sgr A* (Genzeletal.2003a; Scho¨deletal.2003; vature for the observer in comoving reference frames asso- X Ghezetal.2003; Ghezetal.2005). There are three kind ciated with particles freely moving in this field . If the dis- r of an explanation of observed peculiarities of the object tance from a point attractive mass is many larger than r , a g emission: the physical consequences, resulting from these equations, –gasaccretionontothecentralobject-asupermassiveblack are very close to General Relativity results. However, they hole(SMBH)(Coker&Melia2000;Narayan&Yi1995), areprincipallyotheratshortdistancesfromthecentralmass –ejectionofmagnetisedplasmafromanenvironmentofthe . The spherically- symmetric solution of these equations in SchwarzschildradiusoftheSMBH(Falcke&Markoff2000; Minkowski space-time have no event horizon and physical Melia&Falcke2001), singularityinthecentre. – explanations, based on hypotheses of other nature of the Since these gravitational equations were successfully central object ( clusters of dark objects (Maos1998) , a tested by post-Newtonianeffectsin the solar system and by fermion ball (Viollier2003), boson stars (Torresetal.2000; thebinarypulsarPSR1913+16(Verozub&Kochetov2000), Yuan,Narayan&Rees2004). and the stability of the supermassive configurations pre- dicted by them was sufficiently strictly substantiated In the present paper some consequencesof the assump- (Verozub&Kochetov2001a), it is of interest to investigate tion that emission of Sgr A* caused by the existence in the possibility of the existence of such a kind of an object theGalaxycentreofasupermassivecompactobjectwithout in the Galaxy centre as an alternativeto the hypothesisof a eventhorizonareexamined.Theexistenceofsuchstablecon- supermassiveblackhole. figurationsofthedegeneratedFermi-gasofmasses102 1010 ÷ ThegravitationalforceofapointmassMaffectingafree- M⊙,radiusesofwhicharesmallerthantheSchwarzschildra- fallingparticleofmassmisgivenby(Verozub1991). diusr ,isoneofconsequences(Verozub1996)ofthemetric- g Correspondenceto:[email protected]; F = m c2C′/2A+(A′/2A 2C′/2C)r·2 , (1) [email protected] − − (cid:20) (cid:21) L.V.Verozub:SgrA*asprobeofthetheoryofsupermassivecompactobjectswithouteventhorizon 1 where We assume hereforcalculationsthatthe massM of the A=f′2/C, C =1 r /f, f =(r3+r3)1/3. (2) centralobjectisabout3106M⊙. TheradiusR oftheobject − g g canbefoundfromthedistributionofthedensityρmofmatter insidetheobject.Itcanbeobtainedbysolvingtheequations Inthisequationristheradialdistancefromthecentre,r = g 2GM/c2, G is the gravitational constant, c is the speed of ofthehydrodynamicalequilibrium: lightatinfinity,theprimedenotesthederivativewithrespect dp /dr =ρ g , dM /dr=4πr2ρ , (4) m m m r m tor. p =p (ρ ). · m m m Forparticlesatrest(r =0) IntheseequationsM isthemassofmatterinsidethesphere r of the radius r, g = F/m is the force (3) per unit of F = GmM 1 rg (3) mOarss, r = 2GM /mc2 is the Schwarzschild radius of the − r2 " − (r3+rg3)1/3# sphere g and p =r p(ρ ) is the equation of state of mat- r m O ter inside the object. The equation of state, which is valid Fig. 1 shows the force F affecting particles at rest and for the density range of (8 1016)gcm−3, is given by particles,freefallingfrominfinitywithzeroinitialspeed,as ÷ (Harrisonetal.1965) thefunctionofthedistancer =r/r fromthecentre. g n p = m ρ c2, (5) m m ∂n /∂ρ − (cid:18) m m (cid:19) whereinCGSunits −4/9 6 1 n =Q ρ 1+Q ρ9/16 , (6) 2 m 1 m 2 m 4 (cid:16) (cid:17) Q = 6.02281023 andQ = 7.748310−10 . Forthe gravi- 1 2 2 tationalforceunderconsiderationthere aretwo typesof the 0 solutionsofEqs.(4).Besidesthesolutionsdescribingwhite dwarfsandnewtronstars,therearesolutionswithverylarge F −2 masses.Forthemassof3106M⊙ theobjectradiusresulting −4 fromEqs.(4)isabout0.4R⊙ =0.034rg =31010cmwhere r istheSchwarzschildradiusoftheobject. −6 g Itseemsatfirstglancethataccretionontotheobjectwith −8 a solid surface must lead to too large energy release which −10 contradicts a comparatively low bolometric luminosity ( 0 2 4 6 8 10 1036 erg s−1 ) of Sgr A*. However, it must be taken in∼to r / r g account that the radial velocity of test particles free falling frominfinityisgivenbytheequation(Verozub1991) Fig.1.Thegravitationalforce(arbitraryunits)affectingfree- fallingparticles(curve1)andparticlesatrest(curve2)near 1/2 C apointattractivemassM. vff =c (1 C) . (7) A − (cid:20) (cid:21) Thevelocityfastdecreasesatr <r .Asaresult,thevelocity g ItfollowsfromFig.1thatthegravitationalforceaffecting atthesurfaceisonlyabout3.3108cms−1.Consequently,at free fallingparticleschangesits sign atr 2r . Although · we still never observed particles motion a≈t distgances of the the accretion rate M = 10−7 M⊙ yr−1 the amount of the · orderofr ,wecanverifythisresultforveryremoteobjects releasedenergyMv2/2isequalto3.41035ergs−1. g in the Universe – at large cosmological redshifts . Indeed, considerasimplemodel-homogeneousselfgravitatingdust- 2. Atmosphere ballsofdifferent-sizeradiusesr .Theforceactingonparti- b cles at the surface of such a ball is given by Eq. (1) where, There are reasons to believe that the rate of gas accretion inthiscase,r = (8/3)πc−2G̺ r3 istheSchwarzschildra- g b b onto the supermassive object in the Galaxy centre due to diusof the balland ̺ is its density.Ifthe balldensityis of b star winds from surrounding young stars is of the order of t(he 1o0rd−e2r9gofcmth−e3o)b,saenrdvetdhedeitnssritaydioufsmratitsernionttlhesesUthnaivnetrhsee 10−7 M⊙ yr−1 (Coker2001). Therefore,if the objecthasa ∼ b solidsurface,itcanhaveanatmosphere,basicallyhydrogen. radius of the observed matter ( 1028cm ), then r r . ∼ b ≤ g During10Myr (anestimatedlifetimeofsurroundingstars) It follows from Fig. 1 that under the sircumstances the ra- dial accelerations F/m of speckle particles on the ball sur- the mass Matm of the gaseous envelope can reach 10M⊙. If the density of the atmosphere is ρ , and the pressure is facearepositive.Therepulsiveforcegiveriseadeceleration a p = 2ρ kT/m , where k is the Boltzmann constant,T is of the expansion of such a selfgravitating dust-like mass ( a a p theabsolutetemperatureandm istheprotonmass,thenthe Verozub2002 ). More accurate calculations at the redshift p heightofthehomogeneousatmosphereis 0 < z 1 (Verozub&Kochetov2001b) give a good ac- ≤ cordancewithobservationdata(Riessetal.1998). h =2p /ρ g (R)=kT/m g (R), (8) a a a m p m 2 Astron.Nachr./ANXXX(200X)X whereg (R)isg atr =R.AtthetemperatureT =107K m m 600 theatmosphereheighth 108cm.Theatmosphericdensity a ρ =M /4πR2h 1∼03gcm−3.Undersuchacondition, a atm a ∼ ahydrogencombustionmustbeginalreadyinourtime. Ofcourse,theaccretionrateinthepastcouldbeofmany 3D 400 - l m 1 ordersmoreifsurroundingstarshavebeenbornina molec- c ular cloud which was located in this region. (See a discus- @rg l2 sion in (Genzeletal.2003a; Ghezetal.2005). In this case 200 l 3 thecombustioncouldbeginmanytimeagoandmustbemore l 4 intensive. l5 A relationship between the temperature and density can 0 befoundfromthethermodynamicalequilibriumequations 1107 3107 5107 7107 T@KD 1 dL M˙ c2 dS 4πr2ρ drr =ǫpp+λM −T dt, (9) Fig.2.Relationshipbetweentemperatureandpressureofthe a atm homogeneousatmosphereforthevaluesoftheparameterλ: where λ = 1,λ = 1/6,λ = 10−2,λ = 10−3,λ = 10−4 at 1 2 3 4 5 ac d M =3106M⊙andM˙ =10−7M⊙yr−1 L =4πr2 T4. (10) r 3κρ dr a In these equations M˙ is the rate of the gas accretion , ǫpp ρa(R) = ρ0, T(R) = T0, Lr(R) = 0. At T0 = 107K the istherateofthenuclearenergygenerationperunitofmass, luminosity L = 2.41031erg s−1 at ρ0 = 102g cm−3 and λ is the portion of the energythermalized at accretion, S is L=5.61033ergs−1atρ0 =103gcm−3. entropy,andaistheradiationconstant.Fortheproton-proton Thetemperatureatthesurfacecannotbemuchmorethan cyclethevalueofǫppcanbetakentoafirstapproximationas the above magnitude. At the temperature T0 = 3107K and (Schwarzschild1977;Bisnovatyi-Kogan2001) ρ =103gcm−3theluminosityL=1.01036ergs−1,i.e.is 0 avalueoftheorderoftheobservedbolometricluminosityof −2/3 T SgrA*. ǫ =2.5104X2 pp H 109 Due to gravitational redshift a local frequency (as mea- (cid:18) (cid:19) (11) −1/3 suredby a localobserver)differsfromthe onefor a remote T exp 3.38 ergg−1s−1, observerbythefactor1 × "− (cid:18)109(cid:19) # (1+z )−1 =√C, (15) whereX isthehydrogenmassfractionwhichisassumedto g H beequalto0.7,and wherethe functionC = C(r) is definedby Eqs.(2). Fig. 3 κ=0.2(1+X ) showsthedependencyoftheredshiftfactoronthedistanced H (12) fromthesurfaceoftheobject. +41024(1+X )ρ T−3.5 cm2g−1 H a The difference between the local and observed fre- isthe absorptioncoefficientcausedbytheThomsonscatter- quency can be significance for the emission emerging from ingandfree-freetransitions. small distances from the surface. For example, at the In the stationary case for the homogeneous atmosphere above luminosity L = 5.61033ergs−1 the local frequency wehave of the maximum of the blackbody emission is equal to 5.71014Hz. The observed frequency of the maximum is · acT4 Mc2 equal to 2.71012Hz. The correspondingspecific luminosity =ǫ +λ . (13) 3κρ2h2 pp M is 21021ergs−1Hz−1.AtL=1036ergs−1thefrequency a a atm ∼ Fig. 2 showsthe relationshipbetweenT andρ forsev- 1 Thesimpestway toshow itisfollows. Fromtheviewpoint of a eralvaluesoftheparameterλ.Itfollowsfromthefigurethat aremoteobserver,theenergyintegralofthemotionofaparticlein the hydrogenburningcan occuratthe densityof 102 103 spherically-symmetricfieldis(Verozub1991) gcm−3. ÷ ∂ ∂ Aluminosityfromtheburninglayeranddensitydistribu- r˙∂Lr˙ +ϕ˙∂Lϕ˙ −L=E tioncanbefoundbysolvingthedifferentialequationssystem where istheLagrangefunction dM dp L drra =4πr2ρa, dra =ρag(R), = mc c2C Ar˙2 Bϕ˙2 1/2 (14) L − − − dL dT 3κρ L drr =4πr2ρaǫpp, dr =−16πacar2rT3, andEisth(cid:0)eenergyofthepartic(cid:1)le.Intheproperframeofreference oftheparticletheaboveequationstaketheform: =E,and = where Mra is the mass of the spherical layer from the sur- mc2√C.Photonscanbeconsideredasapartic−leLsoftheeffecLtive facetothedistancerfromthecentretheobject.Thebound- p−ropermassmeff = hν/c2.Ityieldstherelationshipν√C = ν∞, aryconditionsonthesurfaceareoftheform:Mra(R) = 0, whereν∞isthefrequencyatinfinity. L.V.Verozub:SgrA*asprobeofthetheoryofsupermassivecompactobjectswithouteventhorizon 3 where 250 3K (x)+K (x) 3 1 φ=3+x 1 4K (x) − 200 (cid:18) 2 (cid:19) (18) 3K (y)+K (y) 3 1 +y 1 , 4K (y) − 150 (cid:18) 2 (cid:19) g 1+z x = mec2/kT,y = mpc2/kT andKj (j = 2,3)isthe ith 100 ordermodifiedBesselfunction,me istheelectronmass The sound velocity v as a function of r can be found s (Service1986)as 50 1/2 ΓP v =c , (19) 0 s ρc2+P 0 0.5 1 1.5 2 2.5 3 (cid:18) (cid:19) d / R where ρ = m n is the gas (fully ionised hydrogenplasma) p Fig.3. The gravitational redshift close to the object surface density.Theadiabaticindex of the mass M = 3106M⊙ and radius R = 0.04rg as the functionofthedistancedfromthesurface(inunitsofR). Γ=c /c , (20) p v where of the maximum is equal to 21015Hz , the observed fre- quency is equal to 9.71012Hz, and the specific luminosity c =5ςΘ−1 (ς2 1)Θ2), p is 11023ergs−1Hz−1.Thesemagnitudesareclosetoob- − − ∼ cv =cp 1, (21) servationdata.(Melia&Falcke2001;Falckeetal.2000) − ς =K (Θ−1)/K (Θ−1), 3 2 3. Peculiarityofaccretion andΘ=kT/m c2.Then e Themainpeculiarityofasphericalsupersonicaccretiononto supermassive objects without event horizon is the existence P Θ = , (22) of thesecondsonic point– ina vicinityoftheobjectwhich ρc2+P η is not connected with hydrodynamicaleffects. The physical where η = K (Θ−1)/K (Θ−1). Having used results by reason is that as the sound velocity v in the incident flow 3 2 s Pressetal.1986 Service (Service1986) have obtained the growstogetherwiththetemperature,thegasvelocityv,like followingpolynomialfittingforΓandP/(ρc2+P): the velocity of free falling particles (7 ) , begin to decrease closetor =r .Asaresult,theequalityv =v takeplaceat g s P/(ρc2+P)=0.03600y+0.0584y2 0.1684y3, somedistancers >R,notfarfromthesurfaceoftheobject. − According to the used gravitation equations Γ=(5 1.8082y (23) − (Verozub1991), the maximal radial velocity of a free +0.8694y2 0.3049y3+0.2437y4), − fallingparticledoesnotexceed0.4c.Therefore,theLorentz- factor is nearly 1, and to find rs we can proceed from the where y = Θ/(0.36 + Θ). We assume that M˙ = simplehydrodynamicsequations: 10−7M⊙ yr−1 andthatatthedistancefromthecentrer0 = 1017cm the velocity v(r ) = 108cm s−1 and the tempera- 0 ture T(r ) = 104K . Under these conditions r = 8R. At · 0 s 4πr2v =M, vv+n′/n=g this point the solutions of the equations have a peculiarity. ε ′ n′ (16) The temperature T(rs) 1010K. The value of rs weakly P =0. dependens on M˙ , howev∼er, it is more sensitive to physical n − n (cid:16) (cid:17) conditionsat large r. For example, it varies from the above Intheseequations.nistheparticlesnumberdensity,εis magnitude8Rupto22RatthetemperatureT(r )=106K. 0 the energydensityof the gas, g = F/m is the gravitational The postshock region stretches from r to such a depth s acceleration. The gas pressure P is taken as 2nkT, and the where protons stopping occurs due to Coulomb collisions primedenotesthederivativewithrespecttor. Therefore,as withatmosphericelectrons.(Wedonottakeintoaccountcol- inthecaseoftheBondiaccretionmodel,weneglectradiation lective effectsin plasma ). The changein the velocityv of p pressure,anequipartitionmagneticfieldwhichmayexistin infallingprotonsinplasmaisgivenbythesolutionofthedif- theaccretionflow,viscosityandlossofenergyduetoradia- ferentialequation tion.However,theenergydensityoftheinfallinggasin(16) iscalculatedmoreaccurate(Coker&Melia2000): dv ε=mpc2n+φnkT, (17) vp drp =g+w, (24) 4 Astron.Nachr./ANXXX(200X)X wherewisthedecelerationofprotonsduetoCoulombcolli- The first-order moment equation of the standard transfer sions. Thismagnitudeis of the form(Alme&Wilson1973; equation for a spherically- symmetric gray atmosphere can Li&Petrasso1993;Deufel,Dullemond&Spruit2001) bewrittenas(Schwarzschild1977) 4πNe4 ′ 2 w = f(x ) lnΛ. (25) H + H +cκρU jρ=0, (33) e − m m v r − e p p In this equation e is the electron charge, N is the particles whereU isthedensityoftheradiationenergy,jandκarethe number density. At r < 1.3R the last magnitude is taken meanemissionandadsorbtioncoefficients,respectively. hereasthequantityn = ρ /m resultingfromthesolution Eqs.(32)and(33)yield a a a ofEqs. (14),andastheparticlesnumberdensityin afree- fallinggas L′4πr2ρ=(j cκU). (34) r − M˙ Therefore,theappropriateforthepurposeofthispaperequa- n= , (26) 4πr2v m tionoftheenergybalanceisoftheform ff p atr >1.3R,wheren>na.Themagnitude ǫ =j cκU. (35) cul − 3 (kT)3/2 lnΛ=ln (27) To a first approximation, j and κ can be taken as ( 2√πe3 N1/2 Bisnovatyi-Kogan2001) is the Coulomblogarithm.The functionf(x ) is taken here e j =51020ρT1/2+6.5UT as (36) +2.3TB2 ergg−1s−1 f(xe)=ψ(xe) xe(1+me/mp)ψ′(xe), (28) and − where κ=0.4+6.41022ρT−7/2 (37) x = mevp2 1/2, (29) +6.5c−1Tγ +2102B2T−3 cm2g−1, e 2kT ! where T = (U/a)1/4 is the radiation temperature and B γ ψistheerrorfunction is a possible magnetic field close to the object surface (See Section 5). Terms in (36) describe free-free, Compton and 2 xe ψ(x )= exp( z2dz (30) synchrotronemission, respectively.Terms in ( 37 ) describe e √π Z0 − theinverseprocesses,andthefirsttermtakesintoaccountthe andψ′(x )isthederivativewithrespecttor. Thomsonscattering. e Thevelocityvff iscloseto thegreatestpossiblevelocity The rate ǫcul of the energy release due to Coulomb col- of the infalling gas. It leads to the minimally possible dis- lisions per unit of mass is given (Alme&Wilson1973) by tance of a point of the full proton stopping from the object surface. A numerical solution of Eq. ( 24 ) shows that this 4πe4 magnitude is equal to (0.3 0.4)R. The particles number ǫcul =f(xe) lnΛ. (38) densityinthisregionis 10÷14cm−3 (Weneglectsomedif- mpvp ∼ ferencebetweentheheightofprotonsandelectronsstopping IftoneglectadsorbtiontermsinEq.(35)andthegrav- (Bildstenetal.1992)).Abovethisregionthemostpartofthe itationinfluenceinsidethestoppingregion, itispossibleto kineticenergyprotonsisreleased. obtain some simple analytic relationships between the tem- The distribution of the temperature T(r) in this region perature T and the energy E of a decelerating photon. In- p can be obtained from an equation of the energy balance. deed,the value of N at the distance r = 6R is of the order (Suchaquestionfornutronstarshasbeenconsideredearlier of108cm−3.Atthetemperatures 1010Kthefree-freeand by Zel’dovich & Shakura (1969) , Alme & Wilson (1973), Compton radiations are predomin∼ated. Taking into account Turollaetal. (1994),Deufeletal.(2001),and,formagnetic thatx 1,weobtain e whitedwarfs,byWoelk&Beuermann(1992)).Supposethat ≪ allprotonsstoppingpowerisconvertedintoradiation.LetH 4 m 3/2 E 3/2 f(x ) e p , (39) be the radiativefluxand Lr = 4πr2H – the fluxtroughthe e ≈ 3√π (cid:18)mp(cid:19) (cid:18)kT(cid:19) sphereoftheradiusr.Thentheenergybalancemeansthat whichyieldstherateoftheenergyreleaseperunitofmass: L′ =4πr2ǫ ρ (31) r cul NE where ǫcul is the rate of the energyrelease due to Coulomb ǫcul =ξT3/2p, (40) collisions,ρ=m N isthegasdensityandtheprimedenotes p where thederivativewithrespecttor.Theleft-handsidein(31)is L′ =4πr2 H′ + 2H . (32) ξ = 16√πmee4 . (41) r r 3√2m2k3/2 (cid:18) (cid:19) p L.V.Verozub:SgrA*asprobeofthetheoryofsupermassivecompactobjectswithouteventhorizon 5 Then, if the largestcontributionprovidesfree-freeradiation 1010 ( the field B is weak ) , it follows from the equation of the B = 0 energybalancethat B = 103 (R/r)3 G T =(δ E )1/2 (42) B = 104 (R/r)3 G 1 p 109 whereδ1 =2.361024K2erg−1.Forexample,atr =6Rthe K ] ) protonenergyEp = 4.810−6ergwhichyieldsthetempere- T [ tculoreseTto=r3=.3110.49KR., SainshcearEppdriospaifnastthedetcermeapseirnagtufruentcatkioens Log ( 108 placeatthedistance 0.4Rfromthecentre. ∼ Ifthemagneticfieldissufficientlystrong,themaincontri- butionintheenergybalanceprovidessynchrotronradiation. 107 In this case the relationship between the temperature T and theenergyE oftheprotontakestheform 0.5 1 1.5 2 p r [cm] x 1011 2/5 T = δ NEp (43) Fig.4. ThetemperatureT asthe functionof r inside there- 2 B2 gion of protons stopping for the object of the radius R = (cid:18) (cid:19) 0.04r . The boundary conditions are: at the distance from whereδ2 =1024K5/2erg−1cm3andB 6=0. the sugrface 5R the luminosity L0 = 1036erg s−1, the tem- Ingeneralcase,assumingthatatthedistancer0 =6Rthe perature T = 5.4109K, the velocity of protons v = luminosity L(r0) = 1036ergs−1 , the energyflux U(r0) = 2.32109cm0s−1. The plots for three value of the magp0netic L(r )/4πr2candthe protonsvelocityv (r ) = v (r ), we 0 0 p 0 ff 0 fieldBareshown. findfromEq.(35)thatthetemperatureT(r )=5.4109K. 0 On the other hand, if the absorption is not ignored, Eq. (35)yieldsthedifferentialequation To find the temperature distribution from the surface to ∂Φ(r,T)/∂r distances d R more correctly, equations of the structure T′ = , (44) ∼ ofloweratmosphere,accretionandenergybalanceshouldbe −∂Φ(r,T)/∂T solved simultaneously. It can affect the value of the atmo- whereΦ(r,T) = ǫcul j+cκU.Asimultaneouslysolving spheric density at the surface. However, as it was noted in − ofthisdifferentialequationtogetherwiththeequations Section2,ourknowledgeofthismagnitudeinitiallyisrather uncertain.Thedensityofρ 103gcm−3(whichcorresponds 1U′ =κ Lr tothetemperatureT 107∼K)isthemostprobablesincean 3 4πr2c ∼ essentiallygreatervalueofthedensityortemperatureofthe and(31)allowstoobtainthedistributionT(r)atthedistances bottomatmosphereleadstotheluminositywhichcontradicts rwhereǫcul =0. theobservablebolometricluminosityofSgrA*.Atthesame 6 Fig.4showsatypicaltemperatureprofileintheregionof time the existence of a high temperature at distances where protonsstopping. protonsstoppingoccurshardlyis a subjectto doubt.There- Itisinterestingtoestimatethetemperatureatthesurface fore,thejumpofthetemperatureoftheorderof(102 103)K ÷ proceedingfromthesimplifyingassumptionthatallluminos- isaninevitableconsequenceoftheSgrA*modelundercon- ityofSgrA*(L 1036ergs−1)iscausedbynuclearburning sideration. ∼ at the surface and stopping of incidentprotonsat some dis- tance d R from the surface. Under such a condition, an ≤ effectivetemperatureT onthetopofthedenseatmosphere( 0 d 0.4R)isabout104K.Theradialdistributionofthetem- ∼ 4. Comptonization peratureinthediffusionapproximationcanbedeterminedby thedifferentialequation (T4)′ = 3χH, (45) AnemergentintensityI ofthelow-atmosphericemissionaf- 4b terpassagethroughahotsphericalhomogeneouslayerofgas s isa convolutionofthe PlankianintensityI oftheemission whereχ=κρ,b =5.7510−5ergcm−2K−4istheStephan- 0 s ofaburninglayer,andthefrequencyredistributionfunction Boltzmannconstant,andH istheradiativefluxwhichissup- Φ(s)ofs =lg(ν/ν ),whereν andν arethefrequenciesof 0 0 posedtoconstant.Itgivesapproximately theincomingandemergingradiation,respectively: χ T4 T4 = H∆r, (46) − 0 b where ∆r = 0.4R . Setting χ = 1 we find that at the sur- facethetemperatureisabout107Kwhichcoincideswiththe ∞ I(x)= Φ(s)I (s)ds. (47) magnitudeusedinSection2. 0 −∞ Z 6 Astron.Nachr./ANXXX(200X)X At the temperatureof the orderof 1010K the dimensionless 19 parameterΘ=kT/m c2 1.Undertheconditionthefunc- e ∼ tionΦ(s)canbecalculated(Birkinshaw1999)asfollows: -1LDz 18 Τ=0.5 H m e−ττk -1 17 + Φ(s)= P (s), (48) s k g Xk=0 k! HEr 16 Τ=0.1 where @LΝ +Τ=0.03 1 og 15 P (s)= ϕ(β )P(s,β )dβ . (49) L Τ=0.01 1 e e e Z(βe)min 14 15 16 17 18 19 20 In the last equations β is the electron-light velocity speed e Log@ΝHHzLD ratio, Fig.5. Emergent spectra of nuclear burning after comp- γ5β2exp( γ/Θ) ϕ(β )= − , (50) tonizationbyahomogeneoushotlayerfortheopticalthick- e ΘK (Θ−1) 2 nessτ =0.01, 0.03,0.1,0,5.Thecrossesdenotetheobser- γ =(1 β2)−1/2., vation data (Baganoffetal.2003; Porquetetal.2003) (The − e upperandlowerlimitsarespecified). epsp 1 (β ) = − (51) e min epsp+1 5. Transfer equation andsynchrotron radiation and 3 µ2 ofSgrA* P(s,β )= (1 β µ)−3 e 16γ4β − e e Zµ1 Some authors (Robertson&Leiter2002) find in spectra of 1 1+β µ′)(1+µ2µ′2+ (1 µ2)(1 µ′2) dµ, candidatesintoBlackHolessomeevidencesfortheexistence e × 2 − − (cid:18) (cid:19) ofa propermagneticfield of these objectsthatis incompat- iblewiththeexistenceofaneventhorizon.Inordertoshow es(1 β µ) 1 µ′ = − e − , (52) howthemagneticfieldnearthesurfaceoftheobjectinques- βe tion can manifests itself, we calculate the contribution of a magnetic field to the spectrum of the synchrotronradiation. 1 s 0 Weassumethatthemagneticfieldisoftheform µ1 = 1−−e−s(1+βe) s≤ 0 (53) ( βe ≥ R 3 B =B , (55) int 0 r 1−e−s(1−βe) s 0 (cid:18) (cid:19) µ2 =(1 βe s ≤0. (54) whereB0 =1.5104G. ≥ To find the emission spectrum from the surface vicin- Takingintoaccountscatteringupto3rdorder( m = 3) ity, the influenceof gravitationon the frequencyof photons an approximate emergent spectrum of the nuclear radiation and their motion must be taken into account. An appropri- aftercomptonizationhasbeenobtainedforthecasewhenthe ate transfer equation is the Boltzmann equation for photons temperatureatthesurfaceis107Kandρ=3103gcm−3.The which uses equationsof their motionin stronggravitational results are plotted in Fig. 5 for several values of the optical fields resulting from the used gravitation equations. (Such thicknessτ . an equation in General Relativity has been considered by It follows from this figure that the comptonization Lindquist(1966),Schmidt-Burgk(1978),Zaneet al. (1996) may give a contribution to the observed Sgr A* radia- andPapathanassiou&Psaltis(2000))TheBoltzmannequa- tion (Baganoffetal.2003; Porquetetal.2003) in the range tionisoftheform 1015 1020Hz. ÷ Itisnecessarytonotethatthetimescale∆tofavariable d F =St( ,t,x), (56) processisconnectedwith thesize ∆ofits regionbythere- dt F lationship ∆ c ∆t/(1+z ). For example,the variations g in the radiatio≤n intensity of 600 s on clock of a remote where = (t,x,p) is the phase-space distribution func- observer occur at the distanc∼e d 6 1.7R from the surface. tion, xF= (xF1,x2,x3) and p = (p1,p2,p3) are the photon Forthisreasonhigh-energyflashescanbeinterpretedaspro- coordinatesandmomentums,d/dtisthederivativealongthe cessesnearthesurfaceofthecentralobjects. photonpath,St( ,t,x)isacollisionsintegral.Thesolution It is possible that the diffuse, hard X-ray emission from of this equationFis related to the intensity I as = β−1I the giant molecular clouds of central 100pc of our Galaxy whereβ =2h4ν3c−2andν isthelocalfrequencyF. (Parketal.2004; Cramphorn&Sunyaev2002) is a conse- Inthestationaryspherically-symmetricfieldthedistribu- quenceofthe moreintensiveX-rayemission ofSgr A*due tionfunction = (r,µ,ν)whereµ = cosθ isthecosine F F tonuclearburstsinthepast. betweenthe directionof the photonandthe surfacenormal. L.V.Verozub:SgrA*asprobeofthetheoryofsupermassivecompactobjectswithouteventhorizon 7 Thepathderivativetakestheform where,K (1/Θ)is the modifiedBessel functionofthe sec- 2 ondorder, d ∂ ∂ ∂ν ∂ ∂µ F =v F + F + F , (57) dt ph(cid:18)∂r ∂ν ∂r ∂µ ∂r(cid:19) (ζ)= 4q1 1+ 0.4q2 + 0.53q3 e−1.8896ζ1/3, (65) M ζ1/6 ζ1/4 ζ1/2 wheretheradialcomponentofthephotonvelocitydr/dt = (cid:18) (cid:19) vph isgivenby(Verozub1996) ζ =2ν/3νbΘ2andνb =eB/2πmecisthenonrelativisticcy- clotronfrequency.Theparametersq ,q andq arefunctions 1 2 3 C Cb2 ofthetemperatureT.TheyhavebeenobtainedfromTable1 vph =c A 1− f2 , (58) of the above paper. The true adsorbtion opacity χth is sup- (cid:20) (cid:18) (cid:19)(cid:21) posedtoberelatedtoη viaKirchofflawasχ =η /B , th th th ν andbisanimpactparameter.Thefrequencyasafunctionofr whereB isthePlanckfunction. ν isgivenbytheequationν =√Cν∞.Thefunctionµ=µ(r) For the population of non-themal electrons we use satisfythedifferentialequation a power-law distribution ( O¨zel,Psaltis&Narayan2000 ) which is proportionalto γ−α where γ is the Lorentz factor dµ dθ =(1 µ2)2 , (59) andtheparameterαissupposedtobeequalto2.5.Forsuch dr − dr a distribution the emissivity of the non-thermal electrons is where(Verozub1996) approximatelygivenby dθ = cCb. (60) e2N ν −0.25 dr f2 η =0.53δ ϕ (Θ)ν , (66) nth 1 b c ν (cid:18) b(cid:19) In the above equations the geometrical relationship b2 = where r2(1 µ2)mustbetakenintoaccount. − Withregardstoallstatedabove,theBoltzmannequation 6+15Θ ϕ (Θ)=Θ (67) alongthephotonpathscanbetakenintheform 1 4+5Θ d 1 andthefractionδ oftheelectronsenergyinthethermaldis- v F = (η+σJ) (χ+σ) . (61) ph dr β − F tributionissupposedtobetheconstantinradiusandequalto 0.05. Theright-handsideofthisequationistheordinarysimplified The adsorbtion coefficient for non-thermal electrons is collisionsintegralforanisotropicscattering(Mihalas1980) takenas intermsofthefunction .Inthisequation F e2N ν 2.75 1 χ =1.371027δ ϕ(θ)ν . (68) J =(1/2) β dµ, (62) nth cν b ν F (cid:18) b(cid:19) Z−1 ForacorrectsolutionofEq.(61)isnecessarytotakeinto isthemeanintensity,ηisthesynchrotronemissivity,χisthe accountthatfromthepointofviewoftheusedgravitational trueadsorbtionopacity,σistheThomsonscatteringopacity. equationstherearethree typesofphotonstrajectoriesin the If (r,µ) is a solutionof the integro-differentialequa- Fν spherically-symmetricgravitationfield.ItcanbeseeninFig. tion(61),thespecificradiativefluxis 6.Thefigureshowsthelocusinwhichradialphotonveloci- 1 tiesareequaltozero.Itisgivenbytheequation H =(1/2) β (r,µ)µdµ (63) ν ν Z−1 F b= f . (69) Therefore,bysolvingEq.(61)forallparameters0<b< √C ∞ anemergentspectrumofSgrA*canbeobtain.Foranumeri- The minimal value of b is b = 3√3r /2. The corre- calsolvinganiterativemethodcanbeusedwithnoscattering cr g spondsing distance from the centre is r = √319r /2. The asastartingpoint. cr g photonswith an impact parameter b > b , the trajectories Weassumethatatthesurfaceoftheobject(duetononsta- cr ofwhichstartatr < r (type1inFig.6),cannotmoveto tionaryMHD-processes)andalsohigher,intheshockregion, cr infinity. It can do photons with b > b , if their trajectories asmallfractionsoftheelectronsmayexistinanon-thermal cr startatr >r (type3),andallphotonswithb<b (type distribution. Therefore,following Yuan, Quatert & Narayan cr cr 2). (2004),wesettingη =η +η andχ=χ +χ ,where th nth th nth In order to find the solutions of equation (61), de- indexesthandnthrefertothemalandnonthemalpopulation, F+ scribingthe outgoingemission providedby photonsof type respectively. 2,theboundarycondition (r = R,ν,µ) = 0canbeused. There is a fitting function for the synchrotron emis- F Theboundarycondition (r ,ν,µ) = 0allowstofind sivity of the thermal distribution of electrons which F → ∞ the solutions , describingthe emission ingoingfromin- is valid from T 108K to relativistic regimes ( F− ∼ finity.Thevaluesofthissolutioncanbeusedasaboundary Madehavan,Narayan&Yi1996): conditionstofindtheoutgoingemissionprovidedbythepho- Ne2ν tonsoftype3(Zaneetal.1996).Ofcourse,thevalueofthe η = (ζ), (64) th √3cK2(1/Θ)M functionF = β−1Bν,whereBν isthePlanckfunction,can 8 Astron.Nachr./ANXXX(200X)X It follows from the figure that the proper magnetic field 10 canmanifestitselffortheremoteobserveratthefrequencies largerthat(2 4)1012Hz–inIRandX-rayradiation. ÷ 8 ItfollowsfromFigs.5 and7 thatthe perculiarityofSgr A*spectrumatν >1014Hzcanbeexplainedbybothphys- ical processes at the object surface and by the existence of 6 a non-thermal fraction of electrons in the gas environment. g b / r We do not know at the moment which of these sources is 4 3 predominant.However,theopportunityoftheexplanationof 1 flareactivityofSgrA*byphysicalprocessesatthesurfaceis ratherattractive. 2 2 ThemeasurementsofthepolarisationofSgrA*emission offer new possibilities for testing of models of this object. 0 0 1 2 3 4 5 6 7 AccordingtoobservationsbyBoweretal.(2003)atthefre- r / r quency 2.31011Hz, the Faraday rotation measure (RM) is g 2106radm−2. In our case at this frequency the optical Fig.6.Thefunctionb(r).Thereare3typesofphotonstrajec- ≤ depth τ of the atmosphere become equal to 1 at a distance tories:1)Theimpactparameterb>b ,thetrajectorybegins cr of r 7r from the centre. The influence of the inter- atr <rcr,2)b<bcr,3)b>bcr,thetrajectorybeginsatr > nal mmiangn≈etic figeld is insignificant at here. The value of the r . cr RM is 107radm−2. This magnitudeis notdifferedfrom ∼ that obtained in the model by Yan, Eliot & Narayan (2004) based on the SMBH - theory. Taking into account that we beusedasaboundaryconditiontofindemissionfromlarge knowthe distributionofthe densityandmagneticfield very opticaldepths. approximately,we cannotsay that the obtained value of the Fig.7showsthespectrumofthesynchrotronradiationin RMcontradictobservationdata. thebandof1011 21018Hzforthreecases: –forthemagneti÷cfieldB (55)oftheobjectatthegibrid At increasing of the frequency the value of rmin de- int creases, and influence of the proper magnetic field must in- distribution of electrons with the parameter δ = 0.05 (the creasebecausetheradiationcomefrommoredepthoftheat- dashedline), moshere.Atfrequenciesmorethan21012Hztheatmosphere –forthesumofB andanexternalequipartitionmagnetic int becomethetransparentcompletelytothesynchrotronradia- fieldB = (M˙ v r−2)1/2 whichmayexistintheaccretion ext ff tion. Therefore, the full depolalization of the radiation may flow(Coker&Melia2000)(thesolidline), givesomeevidencefortheexistenceofamagneticfieldclose – for the magnetic field B without non-themal electrons int thesurface. (thedottedlinewhichatthefrequencies<1014Hzcoincides with the dash line). in the presence of the proper magnetic field 6. Conclusion The clarification of nature of compact objects in the galac- 1025 ticcentresisoneofactualproblemsoffundamentalphysics δ=0.05, B=Bint+Bext and astrophysics.The results obtained above,of course, yet δ=0, B=B +B −1Hz ] ) δ=0.05, Bi n=t Binetxt dthoeynosthaolwlowthatot tdhreawpotshseibwilietlyl,-dinevfiensetdigcaotendclhuesrieo,nas.tHlaoswt,deoveesr −1Erg s 1020 sntoutdcyo.ntradict the existing observations, and require further L [ ν g ( Lo References 1015 Alme,M.,Wilson,J.:1973,ApJ186,1015 12 14 16 18 Log ( ν [ Hz ] ) Baganoff,F.,Maeda,Y.,Morris,M.etal.:2003,ApJ591,891 Birkinshaw,M.:1999,PhysicsReports310,97 Fig.7.Thespectrumofthesynchrotronradiation.Thedashed Bildsten,L.,Salpeter,E.,Wasserman,I.:1992ApJ384,143 line shows the luminosity Lν for a remote observer for the Bisnovatyi-Kogan, G.: 2001 Stellar Physics, v. I and II, Springer possible proper magnetic field Bint. The parameterδ of the Verlag hybrid distribution of electrons is equal to 0.05. The dotted Bower,G.,Write,M.,Falcke,H.&Backer,D.:2003,ApJ588,331 lineshowstheluminositywithoutnon-themalelectrons.The Coker,R.,Melia,F.:2000,ApJ534,723 Deufel,B.,Dulemond,C.,&Spruit,H.:2001,A&A377,955 solidlineistheluminosityatthepresencebothB andthe int Coker,R.:2001,A&A375,18 external equipartition magnetic field B . The short lines ext Cramphorn,C.&Sunyaev,R.:2002,A&A389,252 with the double arrows show observation data according to Falcke,H.,Markoff,S.:2000,A&A362,113 O¨zeletal(2000) Falcke,H.,Melia,F.&Agol,E.:2000,ApJ528,13 L.V.Verozub:SgrA*asprobeofthetheoryofsupermassivecompactobjectswithouteventhorizon 9 Genzel,R.,Scho¨del,R.,Ott,T.,etal.:2003a,ApJ594,812 Genzel,R.,Scho¨del,R.,Ott,T.etal.:2003b,Nature425,934 Ghez,A.,Salim,S.,Horstein,S.,etal.:2005,ApJ620,744 Ghez,A.,Ducheˆne,G.,Matthews,K.etal.:2003,ApJ586,127 Harrison,B.,Thorn,K.,Wakano,M.,&Wheeler,J.:1965,Gravita- tionTheoryandGravitationCollapse,Univ.ChicagoPress Lindquist,R.W.:1966,Ann.Phys.37,487 Li,C.&Petrasso,R.:1993,Phys.Rev.Lett.70,3063 Madehavan,R.,Narayan,R.&Yi,I.:1996,ApJ465,327 Maoz,E.:1998,ApJ494,181 Melia,F.,&Falcke,H.:2001,ARA&A39,309 Mihalas, D.: 1980, Stellar Atmospheres, Freeman and Company, SanFrancisco Narayan,R.&Yi,I.:1995ApJ444,231 O¨zel,F.,Psaltis,D.,&Narayan,R.:1996,ApJ541,234 Papathanassiou,H.&Psaltis,D.:2000,e-printastro-ph/0011447 Park,S.,Muno,M.,Baganoff,F.,etal.:2004,ApJ603,548 Porquet,D.,Predehl,P.,Aschenbach,B.etal.:2003,A&A404,17 Press,W.H.etal.:1986,NumericalRecipes:TheArtofScientific Computing,New-York,CambridgeUniv.Press Riess,A.:1998,AJ116,1009 Robertson,S.&Leiter,H.:2001,ApJ565,474 Service,A.:1986ApJ,307,60 Schwarzschild , M.: 1977, Structure and Evolution of the stars, Dover Scho¨del,R.,Ott,T.,Genzel,R.etal.:2003,ApJ596,1015 Schmidt-Burgk,J.:1978,APSS56,191 Torres,D.,Capozziello,S.&Lambiase,S.:2000,Phys.RevD62, 104012 Turolla,R.,Zampieri,I.,Colpi,M.,etal.:1996,ApJ496,35 Verozub,L.:1991,Phys.Lett.A156,404 Verozub,L.:1996,AN317,107 Verozub,L.&Kochetov,A.:2000,Grav.andCosm.6,246 Verozub,L.&Kochetov,A.:2001a,AN322,143 Verozub,L.:2001In:”Gravitation,CosmologyandRelativisticAs- trophysics”,KharkovUniv.,44 Verozub, L. & Kochetov, A.: 2001b In: ”Gravitation, Cosmology and Relativistic Astrophysics”, Kharkov Univ., 90 (e-print: astro-ph/0010596) Verozub,L.:2002AIPConferenceProc.624,371. Viollier,R.:2003,AN324,50 Woelk,U.&BeuermannK.:1992,A&A256,498 Yuan,F.,Quataert,E.,&Narayan,R.:2004,ApJ612,724 Yuan,Y-F.,Narayan,R.,&Rees,M:2004,ApJ606,1112 Zane,S.,Turolla,R.,Nobili,L.,&Erna,M.:1996,ApJ466,871 Zel’dovich, Ya. B. & Shakura, N. I.: 1969 Soviet. Astron. AJ 13, 175

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.