ebook img

Severe plastic deformation of metallic materials by equal channel angular swaging PDF

173 Pages·2014·7.72 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Severe plastic deformation of metallic materials by equal channel angular swaging

Severe plastic deformation of metallic materials by equal channel angular swaging: Theory, experiment and numerical simulation Vom Fachbereich Maschinenbau an der Technischen Universität Darmstadt zur Erlangung des Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte Dissertation vorgelegt von M.Sc. Mehmet Okan Görtan aus Kocaeli, Türkei Berichterstatter: Prof. Dr.-Ing. Dipl.-Wirtsch.-Ing. P. Groche Mitberichterstatter: Prof. Dr.-Ing. C. Müller Tag der Einreichung: 03.06.2014 Tag der mündlichen Prüfung: 21.07.2014 Darmstadt 2014 D17 Acknowledgements This work is created during the time I spent as a research assistant (Wissenschaftlicher Mitarbeiter) in the Institute for Production Engineering and Forming Machines (PtU) of Technische Universität Darmstadt, under supervision of Prof. Dr.-Ing. Dipl.-Wirtsch.-Ing. Peter Groche. Completion of this work would not have been possible without the guidance of my “Doktorvater”, Prof. Dr.-Ing. Dipl.-Wirtsch.-Ing. Peter Groche. I would like to express my special thanks to him for his support, tolerance, patience and understanding. I would also like to extend my thanks to Prof. Dr.-Ing. Clemens Müller for co- supervising my work and his support during the longstanding project work with him. Hereby, I would like to state my gratitude to Dr.-Ing. Enrico Bruder for his cooperation during the project “Production of UFG materials by rotary swaging” upon which my thesis bases. I would like to acknowledge all of my coworkers at PtU, the research assistants, our secretaries and our workshop staff who welcomed me to the institute and to Germany from the first day on and supported me during the extended “Adaption to Germany” process. I would like to thank all my friends who helped me carry this burden through the joy of their companionship. Among them, Pinar Topal and Ibrahim Topal deserve my special gratitude for their hospitality in the last phases of my thesis work. Moreover, I wish to express my gratitude to my family for their encouragement and support during my doctoral studies. Finally, I would like to thank my wife, Dr. Fatma Arzu Görtan, with all my heart for her patience and continuous support. Without her, the completion of this thesis wouldn’t be possible. Mehmet Okan Görtan Darmstadt, May 2014 Contents Symbols and Abbreviations .................................................................................... III 1 Introduction ........................................................................................................ 1 2 State of the Art ................................................................................................... 3 2.1 Severe Plastic Deformation of Metals ............................................................ 4 2.1.1 Major Severe Plastic Deformation Processes .......................................... 4 2.1.2 Secondary Equal Channel Angular Pressing Processes ....................... 15 2.2 Incremental Metal Forming ........................................................................... 22 2.2.1 Classification of Incremental Forming Processes .................................. 24 2.2.2 Rotary Swaging ..................................................................................... 25 2.3 Numerical Simulation and Modeling of Forming Processes ......................... 27 2.3.1 Modeling Material Behaviour by Finite Element Simulations ................. 28 2.3.2 Finite Element Simulation of SPD Processes ........................................ 29 2.3.3 Finite Element Simulation of Incremental Bulk Metal Forming Processes . ............................................................................................................... 32 3 Motivation, Objectives and Approach............................................................ 37 3.1 Motivation ..................................................................................................... 37 3.2 Objectives .................................................................................................... 37 3.3 Approach ...................................................................................................... 38 4 Equal Channel Angular Swaging (ECAS) Process ....................................... 41 5 Properties of Used Materials .......................................................................... 45 5.1 Mechanical Properties .................................................................................. 45 5.2 Tribological Properties .................................................................................. 48 6 Mechanics of Severe Plastic Deformation Processes .................................. 51 6.1 Loads on ECAP-Process .............................................................................. 52 I Contents 6.2 Loads on ECAS-Process ............................................................................. 61 7 Finite-Element-Simulation of ECAS-Process ............................................... 71 7.1 Determination of Finite Element Simulation Strategy ................................... 71 7.2 Effect of Channel Length ............................................................................. 78 7.3 Effect of Outer Corner Radius...................................................................... 84 8 Experimental Investigations of ECAS-Processes ........................................ 91 8.1 Results of Experiments with Copper Roundbars (Cu-ETP) ......................... 93 8.2 Results of Experiments with Steel Roundbars (C4C) ................................ 104 8.3 Effect of ECAS Processing on Material Properties .................................... 109 8.4 Validity of the Derived Formulas for Higher Channel Angles ..................... 112 8.5 Summary of the Experimental Findings ..................................................... 115 9 Effect of Process Parameters on ECAS ...................................................... 117 9.1 Tribological Parameters ............................................................................. 117 9.2 Temperature .............................................................................................. 122 9.3 Feeding Speed .......................................................................................... 125 9.4 Feeding Type ............................................................................................. 129 9.5 Process Design Suggestions for Future Applications ................................ 133 10 Summary and Outlook .................................................................................. 135 11 References ..................................................................................................... 139 Figure List ............................................................................................................. 151 Table List ............................................................................................................... 155 Appendix ............................................................................................................... 156 II Symbols and Abbreviations Symbols, Latin Letters Symbol Unit Explanation A mm2 Cross-section area B MPa Strain hardening effect C - Strain rate sensitivity c J/kg K Specific heat D mm Diameter E GPa Young's modulus F mm2 Area of the stationary tool walls F N Force F N Axial force axial F N Force acting on the lower tool low F N Radial force radial F N Resulting force resulting F N Force acting on the upper tool up F N Yielding force yielding h W/m2 K Heat transfer coefficient k MPa Shear yield strength k W/m K Thermal conductivity L mm Length of the entry channel 0 L mm Length of the middle channel 1 L mm Length of the exit channel 2 m - Thermal softening exponent n - Number of severe plastic deformation cycles n - Strain hardening exponent P MPa Pressure, punch pressure P MPa Back pressure 0 P MPa Punch pressure 1 r mm Radius r mm Inner corner radius i III Symbols and Abbreviations r mm Outer corner radius o r - Total reduction t r mm Tool radius t r mm Workpiece radius wp s - Osculation t mm Thickness t s Time T °C or °K Temperature t mm Initial thickness 0 T °C Initial temperature 0 T °C Melting temperature melt T °C Room temperature room V mm/s Speed w mm Width w mm Equivalent width eq X, Y, Z - Major directions IV Symbols and Abbreviations Symbols, Greek Letters Symbol Unit Explanation µ - Friction coefficient γ - Shear strain δ - Second parameter to define the position inside the plastic deformation zone ε - Strain ε' 1/s Strain rate ε - Reference strain 0 ε' 1/s Reference strain rate 0 ε - Von Mises strain vM ζ - Deformation heat dissipation factor d ζ - Friction heat dissipation factor f η ° Angle between slip lines λ ° Angle of friction ν - Poisson's ratio ρ kg/m3 Density σ MPa Tensile stress σ MPa Yield strength y τ MPa Friction stress φ ° Half channel angle φ ° Half arc of curvature χ - First paramter to define the position inside the plastic deformation zone ψ - Shearing fan V Symbols and Abbreviations Abbreviations 2D Two dimensional 3D Three dimensional ALE Arbitrary Lagrangian-Eulerian ARB Accumulative roll bonding C2S2 Continuous confined strip shearing DMZ Dead metal zone EBSD Electro backscatter diffraction ECA Equal channel angular ECAD Equal channel angular drawing ECAP Equal channel angular pressing ECAS Equal channel angular swaging FEA Finite element analysis FEM Finite element method FS Full split GHG Greenhouse gasses HAGB High angled grain boundaries HMP Heinrich Müller Pforzheim HPT High pressure torsion IEA International Energy Agency I-ECAP Incremental ECAP PDZ Plastic deformation zone PS Partial split PtU Institute for Production Engineering and Forming Machines RD-ECAP Rotary die ECAP RSE Repetitive side extrusion SCT Sliding compression test SEM Scanning electron microscope SF Shearing fan SLF Slip-line field SP Single plane SPD Severe plastic deformation TEPS Total equivalent plastic strain UFG Ultrafine grained VDI Verein Deutscher Ingenieure VP Visio-plasticity VI

Description:
2.1 Severe Plastic Deformation of Metals . 2.3 Numerical Simulation and Modeling of Forming Processes . 27 .. samples processed with ARB are solely sheet materials which are majorly subjected to bending
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.