ebook img

Set-Valued Stochastic Integrals and Applications PDF

287 Pages·2020·3.633 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Set-Valued Stochastic Integrals and Applications

Springer Optimization and Its Applications 157 Michał Kisielewicz Set-Valued Stochastic Integrals and Applications Springer Optimization and Its Applications Volume 157 SeriesEditors PanosM.Pardalos (UniversityofFlorida) MyT.Thai (UniversityofFlorida) HonoraryEditor Ding-ZhuDu,UniversityofTexasatDallas AdvisoryEditors J.Birge(UniversityofChicago) S.Butenko(TexasA&MUniversity) F.Giannessi(UniversityofPisa) S.Rebennack(KarlsruheInstituteofTechnology) T.Terlaky(LehighUniversity) Y.Ye(StanfordUniversity) AimsandScope Optimizationhascontinuedtoexpandinalldirectionsatanastonishingrate.New algorithmicandtheoreticaltechniquesarecontinuallydevelopingandthediffusion into other disciplines is proceeding at a rapid pace, with a spot light on machine learning, artificial intelligence, and quantum computing. Our knowledge of all aspects of the field has grown even more profound. At the same time, one of the most striking trends in optimization is the constantly increasing emphasis on the interdisciplinary nature of the field. Optimization has been a basic tool in areas not limited to applied mathematics, engineering, medicine, economics, computer science,operationsresearch,andothersciences. The series Springer Optimization and Its Applications (SOIA) aims to publish state-of-the-art expository works (monographs, contributed volumes, textbooks, handbooks)thatfocusontheory,methods,andapplicationsofoptimization.Topics coveredinclude,butarenotlimitedto,nonlinearoptimization,combinatorialopti- mization,continuousoptimization,stochasticoptimization,Bayesianoptimization, optimalcontrol,discreteoptimization,multi-objectiveoptimization,andmore.New totheseriesportfolioincludeWorksattheintersectionofoptimizationandmachine learning,artificialintelligence,andquantumcomputing. Volumes from this series are indexed by Web of Science, zbMATH, Mathematical Reviews,andSCOPUS. Moreinformationaboutthisseriesathttp://www.springer.com/series/7393 Michał Kisielewicz Set-Valued Stochastic Integrals and Applications MichałKisielewicz FacultyofMathematics UniversityofZielonaGóra ZielonaGóra,Poland ISSN1931-6828 ISSN1931-6836 (electronic) SpringerOptimizationandItsApplications ISBN978-3-030-40328-7 ISBN978-3-030-40329-4 (eBook) https://doi.org/10.1007/978-3-030-40329-4 MathematicsSubjectClassification:28B20,49J21,54C60,65M75,97K60. ©SpringerNatureSwitzerlandAG2020 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG. Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Tothememoryofmyteacher ProfessorAndrzejAlexiewicz Preface The definition of set-valued integrals extending the classical Minkowski sum of sets,wasfirstsuggestedbyR.Aumannwhodefined(see[5])theset-valuedintegral of a measurable multifunction F : T → 2Rn as the image of its subtrajectory integrals S(F) = {f ∈ Lp(T,F,μ,Rn) : f(t) ∈ F(t) for μ−a.(cid:2)e. t ∈ T} by thelinearmappingJ : Lp(T,F,μ,Rn) → Rn definedbyJ(f) = f(t)μ(dt) T for every f ∈ Lp(T,F,μ,Rn). Later on, the above definition has been extended toamoregeneralcase(see[4,24,25,27])dealingwithmultifunctionswithvalues in the space 2X of all nonempty subsets of a separable Banach space (X,| · |). It is clear that the above definition can be extended to the case where the linear mappingJ isdefinedbyastochasticintegralandtakesitsvaluesfromtheBanach spaceL2((cid:2),F,P,X)withagivenprobabilityspace((cid:2),F,P)andaHilbertspace X. Such approach has been applied by F. Hiai and M. Kisielewicz (see [23, 39]) to the definition of set-valued stochastic functional integrals. In particular, in [39] the linear mapping J, taking its values from the space L2((cid:2),F,Rn), has been defined by Lebesgue and Itô integrals on the space L2(R+ × (cid:2),(cid:3)F,Rn) of all squareintegrableF-non-anticipativen-dimensionalstochasticprocesses.Set-valued stochastic functional integrals are good enough (see [42, 44–48]) to the theory of stochasticfunctionalinclusionsxt −xs ∈ cl{Js,t(SF(F ◦x))+Js,t(SF(G◦x))}, called in the author’s monograph [48] as stochastic differential inclusions. Such integrals are not applicable to the theory of stochastic differential inclusions and set-valued stochastic differential equations considered in this book, because these inclusionsandequationsaredefinedbyset-valuedstochasticintegralsthathaveto beset-valuedrandomvariables.Therefore,wedefineset-valuedstochasticintegrals similarlyasitwasdoneinthepaper[33].Itiseasytodefinethemforsubsetsofthe spaceL2(R+×(cid:2),β+⊗F,Rn)withrespecttostochasticprocesseswithpathsof boundedvariation,becauseinsuchacaseimagesofsubsetsofthisspacedefinedby appropriatelinearmappingsaredecomposablesubsetsofthespaceL2((cid:2),F,Rn). Unfortunately, it cannot be applied to set-valued stochastic integrals defined for subsets of the space L2(R+ × (cid:2),(cid:3)F,Rn) with respect to stochastic processes bothwithboundedandunboundedvariationpaths.Theproblemhasbeenpartially solved in [33] by E.J. Jung and J.H. Kim. Unfortunately, the set-valued integral vii viii Preface definedin[33]isstillnotapplicableinthetheoryofset-valuedstochasticdifferential equations, because the set-valued stochastic integral, defined in [33], is not (see [51,74]and[54])integrablybounded. The book is devoted to the general theory of set-valued stochastic integrals, treated as set-valued random variables and defined by images of subsets of the spacesL2(R+×(cid:2),β+⊗F,Rd)andL2(R+×(cid:2),(cid:3)F,Rd×m)bylinearoperators defined by both Lebesgue and Itô integrals. Such defined set-valued stochastic integrals possess properties needed in the theories of stochastic differential inclu- sions and set-valued stochastic differential equations. Therefore, the main part of applications of such defined set-valued stochastic integrals deals with stochastic differential inclusions and set-valued stochastic differential equations and some applications of such inclusions in the stochastic optimal control theory and in the finance mathematics. Set-valued stochastic integrals presented in the book are connectedwithset-valuedfunctionalintegralsconsideredintheauthor’smonograph [48]. Thecontentofthebookisdividedintonineparts.Thefirstthreearedevotedto thebasicnotionsandtheoremsofthesettheory,thefunctionalanalysis,thetheory ofstochasticprocesses,multifunctions,andthetheoryofdecomposablesubsetsof thespaceLp(T,F,μ,X).Chapters4and5aredevotedtoAumann,Lebesgue,and Itôset-valuedstochasticintegrals.Thenexttwochapterspresentsomeapplications oftheaboveset-valuedstochasticintegralstothetheoriesofstochasticdifferential inclusions, set-valued stochastic differential equations, and set-valued functional inclusions. Chapters 8 and 9 contain some examples of applications of set-valued stochastic integrals to the stochastic optimal control theory and the financial mathematics,respectively. The present book is intended for students, professionals in mathematics, and those interested in applications of the theory of set-valued stochastic integrals. Selectedfunctionalanalysisandprobabilisticmethodsandthetheoryofmultifunc- tionsareneededforunderstandingthetext.Formulas,theorems,lemmas,remarks, and corollaries are numbered separately in each chapter and denoted by three numbers. The first stands for the chapter number, the second for the number of thesection,andthelastforthenumberformula,theorem,etc.Theendsofproofs, theorems, remarks, and corollaries are denoted by (cid:2). The main information on bibliographical sources of the material presented in each chapter are contained in thelastpartofthechapterentitledNotesandRemarks. ThemanuscriptofthisbookwasreadbymycolleaguesM.MichtaandJ.Motyl whomademanyvaluablecomments.Thelastversionofthemanuscriptwasreadby ProfessorDiethardPallaschke.Hisremarkswereveryusefulinmylastcorrection ofthemanuscript.Itismypleasuretothankallofthemfortheirefforts. ZielonaGóra,Poland MichałKisielewicz Contents 1 Preliminaries ................................................................. 1 1.1 SetTheoryandTopologicalPreliminaries............................. 1 1.2 FunctionalAnalysisPreliminaries ..................................... 4 1.3 SpaceofSubsetsofMetricSpace...................................... 12 1.4 LebesgueandBochnerIntegrals ....................................... 17 1.5 RandomVariables....................................................... 24 1.6 StochasticProcesses .................................................... 37 1.7 PropertiesofExitTimesofContinuousProcesses.................... 42 1.8 StochasticIntegrals ..................................................... 43 1.9 NotesandRemarks ..................................................... 58 2 Multifunctions................................................................ 61 2.1 ContinuityofMultifunctions........................................... 61 2.2 MeasurabilityofMultifunctions........................................ 69 2.3 SubtrajectoryIntegrals.................................................. 73 2.4 NotesandRemarks ..................................................... 79 3 DecomposableSubsetsofLp(T,F,µ,X)................................ 81 3.1 TheSpaceLp(T,F,μ,X)............................................. 81 3.2 DecomposableSubsetsofLp(T,F,μ,X)............................ 86 3.3 DecomposableHullsofSubsetsofLp(T,F,μ,X) .................. 91 3.4 ConditionalExpectationofSubsetsofLp(T,F,μ,X) .............. 100 3.5 Set-ValuedMartingalesandMartingaleSelectors..................... 103 3.6 NotesandRemarks ..................................................... 105 4 AumannStochasticIntegrals ............................................... 107 4.1 AumannIntegralsofSubsetsofLp(T,F,μ,X)...................... 107 4.2 AumannStochasticIntegrals........................................... 117 4.3 LebesgueSet-ValuedStochasticIntegrals ............................. 121 4.4 ApproximationofAumannStochasticIntegrals....................... 122 4.5 SelectionTheoremsforAumannStochasticIntegrals ................ 134 4.6 IndefiniteAumannStochasticIntegrals................................ 137 4.7 NotesandRemarks ..................................................... 138 ix x Contents 5 ItôSet-ValuedIntegrals..................................................... 141 5.1 ItôSet-ValuedFunctionalIntegrals .................................... 141 5.2 ItôSet-ValuedIntegrals................................................. 150 5.3 UnboundednessofItôSet-ValuedIntegrals ........................... 155 5.4 BoundednessofItôSet-ValuedIntegrals .............................. 163 5.5 IndefiniteItôSet-ValuedIntegrals...................................... 167 5.6 IntegralRepresentationofSet-ValuedMartingales ................... 172 5.7 ApproximationofItôSet-ValuedIntegrals ............................ 174 5.8 SelectionTheoremsforItôSet-ValuedIntegrals...................... 187 5.9 NotesandRemarks ..................................................... 193 6 StochasticDifferentialInclusions .......................................... 195 6.1 ExistenceofSolutionsofSDI(F,G).................................. 195 6.2 PropertiesofStrongSolutionsSetsofSDI(F,G).................... 198 6.3 WeakCompactnessofWeakSolutionsSetsofSDI(F,G)........... 200 6.4 NotesandRemarks ..................................................... 209 7 Set-ValuedStochasticEquationsandInclusions ......................... 211 7.1 ExistenceofStrongSolutionsofSDE(F,G)......................... 211 7.2 ExistenceofWeakSolutionsofSDE(F,G) .......................... 217 7.3 WeakCompactnessofWeakSolutionsSetsofSDE(F,G).......... 225 7.4 Set-ValuedFunctionalInclusions ...................................... 232 7.5 AttainableSetsofStochasticFunctionalInclusions .................. 237 7.6 NotesandRemarks ..................................................... 247 8 StochasticOptimalControlProblems..................................... 249 8.1 OptimalControlProblemsforSystemsDescribedbySDE(f,g)... 249 8.2 OptimalControlProblemsforSystemsDescribedbySDI(F,G)... 255 8.3 NotesandRemarks ..................................................... 257 9 MathematicalFinanceProblems........................................... 259 9.1 Market,Portfolio,andArbitrage ....................................... 259 9.2 OptionPricingandConsumptionProcesses........................... 261 9.3 FinanceOptimalControlProblems .................................... 262 9.4 RecursiveUtilityOptimizationProblem............................... 270 9.5 NotesandRemarks ..................................................... 273 References......................................................................... 275 Index............................................................................... 279 List of Symbols N Setofpositiveintegers,1 R Setofrealnumbers,1 ∅ Emptyset,1 a ∈A aisanelementofasetA,1 A⊂B AisasubsetofB(setinclusion),1 A\B ComplementofBwithrespecttoA,1 limsup A Upperlimitofasequenceofsets,1 n liminf A Lowerlimitofasequenceofsets,1 n (X,T) Topologicalspace,2 cl[S],S ClosureofasetSof(X,T),2 (X,ρ) Metricspace,4 (X,(cid:8)·(cid:8)) Normedspace,5 ∗ X Normedconjugate(dual)ofX,7 σ(X,Y) Weaktopologywithrespecttoduality,7 ∗ σ(X,X ) WeaktopologyofanormedspaceX,7 s(·,A) SupportfunctionofasetA,7 coS ConvexhullofasetS,8 coS ClosedconvexhullofasetS,8 ∗ ∗ ∗ σ(X ,X) Weak topologyofX ,11 Cl(X) Familyofnonemptyclosedsubsetsof(X,ρ),12 Comp(X) Familyofnonemptycompactsubsetsof(X,ρ),12 Conv(X) Familyofnonemptycompactconvexsubsetsof(X,|·|),12 ¯ h(A,B) HausdorffsubdistancebetweensetsAandB,12 h(A,B) HausdorffdistancebetweensetsAandB,12 P(X) Spaceofnonemptysubsetsofthemetricspace(X,ρ),11 LiA Topologicallowerlimitofaset-valuedsequence,16 n LsA Topologicalupperlimitofaset-valuedsequence,16 n LimA Topologicallimitofaset-valuedsequence,16 n A(cid:10)B SymmetricdifferenceofsetsAandB,17 RNP Radon–Nikodymproperty,23 P ⇒P Weakconvergenceofsequencesofprobabilitymeasures,28 n xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.