ebook img

Set theory with a universal set PDF

122 Pages·1994·4.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Set theory with a universal set

SETTHEORYWITHAUNIVERSALSET By MICHAELW.JAMIESON ADISSERTATIONPRESENTEDTOTHEGRADUATESCHOOL OFTHEUNIVERSITYOFFLORIDAINPARTIALFULFILLMENT OFTHEREQUIREMENTSFORTHEDEGREEOF DOCTOROFPHILOSOPHY UNIVERSITYOFFLORIDA 1994 ACKNOWLEDGEMENTS Ioweagreatdealofgratitudetomyadvisor,Prof. RickSmith,notonlyforsome ofthekeyideaswhichhavemadethisprojectwork,andforhishelpinputtingthis workinaproperperspective,butalsoforhissupport,andforhisopenmindednessin becomingassociatedwithit. Thanksalsogototheothermembersofmygraduate committee, Prof. WilliamMitchell, Prof. Douglas Cenzer, Prof. Gregory Ray, fortheirhelp, andespeciallyto Prof. Jean Larsonforextraordinarydiligencein conscientiouslyreadingthisworkinsomephaseswhichwerequiteunpleasant. Ialso mustthankmyteachersthroughoutmyacademiccareerforhelpingshapeinmymind amathematicaluniversewhichcontinuestoholdmyinterest.Iwanttothankallmy academicandnonacademiccoworkersfortheirgood-naturedhelp. Finally,Iwantto thankmyfamilyandwonderfulfriendsfortheirinvaluablesupportthroughoutthis endeavor. u TABLEOFCONTENTS ACKNOWLEDGEMENTS u ABSTRACT iv CHAPTERS 1. INTRODUCTIONANDSURVEY 1 2. BASICCONSTRUCTIONS 22 2.1. BasicConstructions 23 2.2. TheMainConstruction 31 2.3. GeneralResults 44 3. COMPREHENSIVEEXTENSIONALS-SUBALGEBRAS 53 4. AMODELOFSTRICTLYQUANTIFIER-FREECOMPREHENSION 68 4.1. PreliminaryDiscussion 68 4.2. TheDirectLimitConstruction 82 4.3. StrictlyQuantifier-freeComprehensionwithParameters .... 91 5. CONCLUSION 106 REFERENCES 113 BIOGRAPHICALSKETCH 115 in AbstractofDissertationPresentedto theGraduateSchooloftheUniversityofFlorida inPartialFulfillmentoftheRequirementsfortheDegree ofDoctorofPhilosophy SETTHEORYWITHAUNIVERSALSET By MichaelW.Jamieson August1994 Chairman: Dr. RickL.Smith MajorDepartment: Mathematics This dissertation presentsanew resolutionoftheset theoreticparadoxes of RussellandCantor. Theworkcontainsamodelforatheoryofsetswhichimplies that thereisauniversalset u. Inthelanguageofequalityandasetmembership relation-E-,astrictlyquantifier-freeformulaisaquantifier-freeformulawhoseatomic subformulashavenovariablewhichoccursmorethanonce.Theaxiomsofthetheory areextensionalityandthecomprehensionschemeforstrictlyquantifier-freeformulas. Anymodelofthistheorysatisfiesthesentences"theuniversalsetuexists"and"the graphsoftheentiremembershipandidentityrelationsoveruexist". Therichest modelpresentedisalsointernallycountable,i.e.itsatisfiesthesentences"Theordinal — ijoexists"and"Thereisafunction/:u w". TheauthordefinesalistofGodel- likeoperations. Thislistcontainsavariantappropriatetothecontextofauniversal setforeachoperationusedinconstructionofGodel'sLfromtheordinals,except domainformationandunionofanarbitrarysetofsets. Godel-likeclosureimplies strictlyquantifier-freecomprehension. iv ThismodelisconstructedinsideacountableatomicBooleanalgebraasadirect — limitofS-algebras,i.e. atomicsubalgebrasC^withone-to-onemapsSn'•Cn Cn suchthatforallxGCntheelementSn(x)isanatomofCn. ThesemapsSn(-)induce membershiprelations-En-byxEny<->Sn(x)<y. Thestructures(Cn,En)satisfy thesentences"Sfj(x)isthesingletonofx"and"theuniverseisclosedunderbinary union,intersectionandcomplement".Godel-likeclosureandinternalcountabilityare preservedinanextensionalsubstructurewhichisconstructedbyiterativelyapplying thefactthateverycountableBooleanalgebraisprojective. CHAPTER1 INTRODUCTIONANDSURVEY Thisdissertationpresentsamodelofthelanguageofamembershiprelation-E- withthefollowingproperties. (i) Themodelsatisfiesacomprehensionaxiomschemewhichappliesto thosequantifier-freeformulaswitharbitraryparameterswhichcontain no atomicsubformulavRv, i.e. no atomic subformulain whicha variableisrepeated, (ii) Equalityinthemodelisdeterminedbytheprincipleofextensionality (iii) Themodelsatisfiesclosureunderpowersetformation, (iv) Themodelsatisfiesthestatementau>exists", (v) Themodelsatisfiesanaxiomofinternalcountability. RussellobservedacontradictionintheoriginalFregesettheory. Ifristheclass {x\x $l x}, thenr € r *-* r £ r. This argumentusesthecomprehensionaxiom fortheformulaxljx,whichcontainsthesubformulaxExandisthereforeexcluded fromthecomprehensionschemedescribedin(i). Theschemeherediffersfromthe originalinconsistentschemeintwoways. First,thisschemeexcludesinstancesfor quantifiedformulas,sincequantificationisbeyondthescopeofthiswork. Second, thisschemealsoexcludesinstanceswithavariablerepeatedinanatomicsubformula. Therationaleforthisexclusionisthatsuchformulasmayberegardedascontaining animplicitquantification. Forexample,theformulaxljxislogicallyequivalentto 3y[xflyAx=y]. Thisrationaleisdiscussedlaterinthechapter. DEFN 1.1. Strictlyquantifier-freeformulasinC(E,=)arethosequantifier-freefor- mulaswithnosubformulavEvorv=vforanyvariablev. Strictlyquantifier-free 1 2 comprehensionwithparametersforC(E,=)istheaxiomschemewhichcontains,for everystrictlyquantifier-freeformulaF(p,x), theaxiomVfByVx\xEy «- F(p,x)]. Notethatstrictlyquantifier-freecomprehensionallowsvariablerepetitionindistinct atomicsubformulas,forexamplex6yAy€ x. Chapter4containsanextensionalmodel(B,E)ofstrictlyquantifier-freecom- prehension. Insuchmodelsonecan definetheBooleanalgebraoperations. The axiomsofBooleanalgebrasarederivableinthetheorystrictlyquantifier-freecom- prehensionplusextensionality.OperationssimilartomostofthosewhichGodelused todefinetheclassLofconstructivesetsarealsodefinable,andthemodelinChapter 4isclosedundertheseoperations. Anystructureclosedundertheseoperationssat- isfiestheschemestrictlyquantifier-freecomprehension.Theprooffollowsatheorem byGodelaboutthestructureLofconstructiblesets[l]. ThemodelinChapter4satisfiestheadditionalaxiomthatthereisaone-to-one function/intheuniversewhichembedstheuniverseintou. DEFN 1.2. Astructure(C,E,=)isinternallycountableifitsatisfiesthefollowing: (i) Thereisauniversalsetu,i.e.Vx[xEu] (ii) Thereisanelementu>whoseelementswithrespecttoEformastruc- tureisomorphictothenaturalnumbers, — (iii) Thestructure(C,E,=)satisfies3/[/:u u>]. Compared to internal countability, Russell's paradox is a somewhat simpler issue,soitisconsideredfirst. However,thepossibilityoferrorintheZFtreatment ofuncountabilityismuchmoreimportant. Amodelofstrictlyquantifier-freecomprehensioncontainsauniversalsetu,the membershiprelationeandtheidentityrelationtaselements. Thistheoryimplies 3 that~eflt={(x,y)\xljyAx=y}={(x,x)|xj^x}isanelementofthestructure. TheformulaxEyAyEx,withvariablerepetitions,hasanextensionefle whichcan beconstructedwithrelationinversesandintersection.Theideaofstrictlyquantifier- freecomprehensionisthat toconstructtheextensionofxExrequiresadistinctly differentcapability.Itrequirescollectionofthefixedpointsofarelation.Thisisan intuitivelydistinctandmorecomplicatedkindoftask. Thedistinctionisanalogous tothedifferencebetweeny=Ax,whichrepresentsthesimplematrixmultiplication relation,andx=Ax,whichrepresentscollectionoftheeigenvectorswhoseeigenvalue is1. Aformaldistinctionbetweenthesetwokindsoftasks isevidentinthethe- oryofcylindricalgebras[2],alsoknownasquantifiedBooleanalgebras. Acylindric algebraisaBooleanalgebrawithoperationscQ,whicharecalledcylindrifications, andelementsdag,whicharecalleddiagonalizationelements. Elementsoftheal- gebracorrespondtoformulasinafirstorderlanguage. Acylindrificationoperation ca correspondstoquantificationoveravariablexa. Thediagonalizationelements correspondtoatomicformulasxa=xg. ThecylindrificationoperationsbythemselvesdonotextendBooleanalgebras sufficientlytorepresentthepredicatecalculus. Indeed,itisthediagonalarguments whichrequiretheadditionaldiagonalizationelementsdag. Inacylindricalgebra, an atomicformulap(xi,X2,X3) is associated with agenerator gp. The formula p(xi,X2,xi), withvariable repetition, is not generallyassociated with adistinct generator. Suchredundancycanbeallowed,butitproducesnon-extensionality. In- stead,theatomicformulap(xi,X2,xi)canbegenerallyassociatedwiththenatural representationofthelogicallyequivalentformula3x3[p(xi,X2,X3)Axi=X3]. That representationisC3(<7pA^1,3). Nowtherepresentationoftheatomicformulawitha repeatedvariabledoesinvolveaquantifier. 4 Thus,Russell'sconstructionisdonewithoutapparentquantification,becauseof anincidentalfeatureofourparticularformulationoffirstorderpredicatecalculus. Inthisformulation,relationconstructionandfixedpointcollectionappearsosimilar thatthesettheory'snaivecomprehensionaxiomsdidnotdistinguishthem.Suppose awell-formedfirstorderatomicformulaisdefinedasapredicatesymbolpfollowed byavariablex\,andanother(i.e. adistinct)variablex%andanothervariable£3 andsoon,untilwehavethenumberofvariablesappropriateforp.Thenxyxsimply isnotawell-formedformula. Whilethismaynotbenaturalintheformalismoffirstorderpredicatecalculus, thecorrespondingdistinctiondoes arisenaturallyincylindricalgebras. Thiscan happenbecausetheequivalenceoffirstorderpredicatecalculuswiththetheoryof cylindricalgebrasisnotrequiredtopreservenaturality. Twopointsfavorcylindric algebrasinthisissue. OneistheinconsistencywhichresultswhenoneacceptsxEx asanatomicformula.Theotheristheintuitionaboutthedistinctionwithconcrete examples,likey = Ax and x = Ax. This workbegins developmentoftheview that,asaconsequenceofsuppressingthisdistinction,thepresentationofidealset theorysimplysaid somethingunintended. Infact,it happenedtosaysomething false,somethingprovablyfalse(hence,anoutrightinconsistency). Constructions similarto Russell's occur in arguments based on uncountable infinities.TheseargumentscontaincertainstatementswhicharesimilartoRussell's axiomofcomprehension. Itispossibletosalvagethesestatements,whichthiswork takestobemisstatements,sincethesestatementsdonotcontradictthemselves.Still, thereremainsthequestionwhethertheycontradictthetruth. Russell'sandCantor's constructionsareverysimilar. Indeed,Russell'sparadoxwasintendedtodistillthe essenceofCantor'sdiagonalarguments. ConsiderationofRussell'ssetisthenatural 5 initialpoint ofattack, becauseitisasimplerconstructionwithamuchstronger result. Itisdesirableforsettheorytotreattheseparadoxesmuchthesame. Chapters 2and4containmodels(C,E,=)ofinternalcountability. Somodelsexistforthe quantifier-freepartoftheconstructionoftheparadoxicalelements. Thereforethis work attributes thecontradictionswhich arisein thetraditionalanalysisofboth paradoxestomistreatmentofquantification. Toseehowthesuggested restrictionsrelatetothestrengthofthetheory,it ishelpfultoconsiderananalogous,morewell-understoodsituationinSecondOrder Arithmetic.There,allsetscontainonlynaturalnumbers.Church'sThesischaracter- izesthosearithmeticrelationswhosedefinitionsgiveeffectivelycomputabledecision proceduresforthem.Theeffectivelydecidablerelationsarethosewhicharedefinable bothbyanexistentialformula(aformulawithasingleexistentialquantifier)andby auniversalformula(aformulawithasingleuniversalquantifier). Inarithmetic,the quantifier-freepartofauniversalorexistentialformulaisallowedtorefertoaddi- tion,multiplication,equalityofnaturalnumbersandmembershipnGA. Thus,the classofeffectiverelationsisindeedmuchmorelimitedthanthefullclassofdefinable relations. Aquantifier-freearithmeticdefinitioniseffectivelydecidable,relativetowhat- eversetparametersoccurintheformula. Equalityofnaturalnumbersisdefinedby m=n. Soequalityofnaturalnumbersiseffectivelydecidable. Equalityoftwosets ofnaturalnumbersisdefinedbyx=y*-*Vz[z£x«-zGy],anditisnotgenerally definablewithasingleexistentialquantifier. Soitisnoteffectivelydecidable,and reasonablemodelsofsettheoryneednotcontainit. Insecondorderarithmetic,equalityofsetsofnatural numbersisroughlyof thecomplexityofthehaltingproblemrelativeto theelementsx and y. Second

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.