ebook img

Series Representations and Approximation of some Quantile Functions appearing in Finance PDF

164 Pages·2013·1.49 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Series Representations and Approximation of some Quantile Functions appearing in Finance

Series Representations and Approximation of some Quantile Functions appearing in Finance Asad Ullah Khan Munir Adissertationsubmittedinpartialfulfillment oftherequirementsforthedegreeof DoctorofPhilosophy ofthe UniversityofLondon. DepartmentofMathematics UniversityCollegeLondon 2013 1 I, Asad Ullah Khan Munir, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has beenindicatedinthethesis. Abstract Ithaslongbeenagreedbyacademicsthattheinversionmethodisthemethodofchoice for generating random variates, given the availability of a cheap but accurate approx- imation of the quantile function. However for several probability distributions arising in practice a satisfactory method of approximating these functions is not available. The main focus of this thesis will be to develop Taylor and asymptotic series rep- resentations for quantile functions of the following probability distributions; Variance Gamma, Generalized Inverse Gaussian, Hyperbolic, α-Stable and Snedecor’s F distri- butions. Asasecondarymatterwebrieflyinvestigatetheproblemofapproximatingthe entirequantilefunction. Indeedwiththeavailabilityofthesenewanalyticexpressionsa wholehostofpossibilitiesbecomeavailable. Weoutlineseveralalgorithmsandinpar- ticular provide a C++ implementation for the variance gamma case. To our knowledge thisisthefastestavailablealgorithmofitssort. Acknowledgements I am especially grateful to my supervisor Prof. William T. Shaw for giving me the opportunity to do a PhD in mathematics. He has been extremely inspirational to me in developing the results presented in this thesis. Indeed without my discussions with Prof. Shaw I fail to see where I would have found the motivation to persevere. I very much appreciate the financial support and resources provided to me by both the com- puter science and mathematics departments at UCL. I thank the Knowledge Transfer Network (KTN) for Industrial Mathematics and the reinsurance group Willis Re for offering me a research internship. I have only good words to say about both of these organizations. LastbutnotleastIwouldliketothankmyfamilyinparticularmyloving parentsfortheirendlesspatience,financialandmoralsupport. Contents 1 Introduction 7 2 QuantileFunctions 11 3 Applications 15 3.1 ValueatRisk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 MonteCarlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3 Copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4 ExistingMethods 24 4.1 NumericalTechniques . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.1.1 RootFinding . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.1.2 RationalApproximation . . . . . . . . . . . . . . . . . . . . . 25 4.1.3 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.1.4 RelationshipbetweenDistributions . . . . . . . . . . . . . . . 26 4.2 Cornish-FisherExpansions . . . . . . . . . . . . . . . . . . . . . . . . 27 4.3 OrthogonalExpansions . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5 SolutionTechniques 32 5.1 Taylor’sMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.2 RecursiveIdentities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6 QuantileMechanics 39 6.1 Beta,FandStudent-tDistributions . . . . . . . . . . . . . . . . . . . . 43 6.2 HyperbolicDistribution . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.2.1 TaylorSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.2.2 AsymptoticExpansion . . . . . . . . . . . . . . . . . . . . . . 49 6.2.3 ChangeofVariable . . . . . . . . . . . . . . . . . . . . . . . . 51 6.3 VarianceGammaDistribution . . . . . . . . . . . . . . . . . . . . . . 53 6.3.1 TaylorSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.3.2 AsymptoticExpansion . . . . . . . . . . . . . . . . . . . . . . 57 Contents 5 6.3.3 ChangeofVariable . . . . . . . . . . . . . . . . . . . . . . . . 60 6.3.4 Amoreefficientmethod . . . . . . . . . . . . . . . . . . . . . 64 6.4 GeneralizedInverseGaussianDistribution . . . . . . . . . . . . . . . . 66 6.4.1 TaylorSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.4.2 AsymptoticExpansion . . . . . . . . . . . . . . . . . . . . . . 69 6.4.3 ChangeofVariable . . . . . . . . . . . . . . . . . . . . . . . . 72 7 AlternativeRoutes 75 7.1 MomentumSpace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 7.1.1 CharacteristicQuantileEquation(C.Q.E.) . . . . . . . . . . . . 76 7.1.2 Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 7.1.3 TaylorSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 7.2 TheLagrangeApproach . . . . . . . . . . . . . . . . . . . . . . . . . 84 7.2.1 α-StableDistribution. . . . . . . . . . . . . . . . . . . . . . . 86 8 NumericalTechniquesandExamples 91 8.1 RootFinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 8.2 NumericalIntegrators . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 8.3 ContinuedFractionsandPadéApproximants . . . . . . . . . . . . . . 95 8.3.1 ContinuedFractions . . . . . . . . . . . . . . . . . . . . . . . 96 8.3.2 PadéApproximants . . . . . . . . . . . . . . . . . . . . . . . . 98 8.3.3 ErrorandPartitionManagement . . . . . . . . . . . . . . . . . 101 8.4 SequenceTransforms . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 8.5 ChebyshevSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 8.5.1 DiscreteFourierTransform . . . . . . . . . . . . . . . . . . . . 107 8.5.2 FromTaylorSeries . . . . . . . . . . . . . . . . . . . . . . . . 109 8.5.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 8.6 Chebyshev-PadéApproximants . . . . . . . . . . . . . . . . . . . . . . 113 8.7 OsculatoryRationalInterpolation . . . . . . . . . . . . . . . . . . . . . 115 8.8 MinimaxApproximations . . . . . . . . . . . . . . . . . . . . . . . . . 118 8.8.1 TheSecondAlgorithmofRemez . . . . . . . . . . . . . . . . 118 8.8.2 Maehly’sIndirectMethod . . . . . . . . . . . . . . . . . . . . 122 8.9 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 9 Conclusion&FurtherWork 133 A ThePearsonFamilyofDistributions 135 Contents 6 B Variance-MeanMixtureDistributions 137 B.1 GeneralizedInverseGaussian . . . . . . . . . . . . . . . . . . . . . . . 138 B.2 GeneralizedHyperbolicDistribution . . . . . . . . . . . . . . . . . . . 140 C CodeListings 144 Bibliography 155 Chapter 1 Introduction Analytic expressions for quantile functions have long been sought after. The import- ance of these functions comes from their widespread use in applications of statistics, probability theory, finance and econometrics. Therefore much effort has been devoted intotheirstudy,inparticular sinceclosedformexpressionsforthequantilefunctionof mostdistributionsarenotknown,severalapproximationsappearintheliterature. These approximations generally fall into one of four categories, series expansions, functional approximations,numericalalgorithmsorclosedformexpressionswrittenintermsofa quantile function of another distribution. The focus of this report is on the former two categories. We follow the philosophy of Steinbrecher and Shaw (2008), Shaw et al. (2011) andShawandMcCabe(2009)closely,thatisto“elevatequantilefunctionstothesame levelofmanagementasmanyoftheclassicalspecialfunctionsofmathematicalphysics and applied mathematics”. In particular this requires efficient computation. According toLozierandOlver(1994),therearethreestagesinthedevelopmentofcomputational proceduresofspecialfunctions: 1. Derivation of relevant mathematical properties: This stage is primarily an ex- ercise in applied mathematics, and is concerned with finding representations of various forms such as, asymptotic expansions, difference and differential equa- tions,functionalidentities,integralrepresentations,andTaylorseriesexpansions. 2. Development of numerical approximations and algorithms: This stage is an ex- ercise in numerical analysis and is concerned with finding Chebyshev series ex- pansions, minimax polynomial and rational approximations, Padé approxima- tions,numericalquadratureandnumericalsolutionsofdifferenceanddifferential equations. 3. Construction and testing of robust software: This final stage is an exercise in computer science, and though highly dependent on stage 2, great benefits can be 8 gainedatthisstagesuchasthepossibilityofparallelizationandortheutilization ofvariousplatformspecificfeatures. Thebulkoftheworkwecarryoutinthisreportbelongstostages1and2,inparticular we will develop Taylor and asymptotic series expansions for the quantile functions of the following probability distributions; Variance Gamma, Generalized Inverse Gaus- sian, Hyperbolic, α-Stable and Snedecor’s F. With these analytic expressions in place weproceedtostage2wherewewillbeconcernedwiththeconstructionofvarioustypes of approximants such as continued fractions, Chebyshev series and minimax approx- imations. Finallywebrieflyvisitstage3,whereaC++implementationofanalgorithm usedtoapproximatethevariancegammaquantileisprovided. There is no shortage of research articles discussing the approximation of quantile functions,seeforexampleDagpunar(1989);Derflingeretal.(2009,2010);Lai(2009); Farnum(1991);LeydoldandHörmann(2011)tonameafew. Thesepapersareprimar- ilyconcernedwithapplyingnumericaltechniquessuchasrootfindingandinterpolation to approximate the quantile function. Our approach however is centred around formu- lating a first order ordinary differential equation problem. We are not the first however toconsiderthisdifferentialequationapproach,sucharouteisalsotakenbyUlrichand Watson (1987) and Leobacher and Pillichshammer (2002). Here numerical schemes such as Runge-Kutta methods are used to seek solutions. On the other hand we will seek analytic solutions by applying certain well known techniques from applied math- ematics. Aside from Shaw’s series of Quantile Mechanics papers which we will discuss in subsequent chapters, few authors have written about series representations of quantile functions. Possiblytheearliestknown(atleasttothisauthor)seriesrepresentationisthe famous Cornish Fisher expansion introduced in (Cornish and Fisher, 1938; Fisher and Cornish, 1960). The Cornish Fisher expansion expresses the u-quantile of a random variableX intermsofitscumulantsandtheu-quantileofthestandardGaussiandistri- bution. TheideawasgeneralizedinHillandDavis(1968)byallowingfornonGaussian basedistributions. TheCornishFisherexpansionisoftenusedforVARapplicationsin finance,seeforexampleJaschke(2002). Another interesting approach was introduced by Takemura (1983). Here a base quantile function Q is chosen, based on which an orthonormal basis for the set of B square integrable functions on the unit interval is formed. Consequently the Fourier series expansion of the target quantile Q with respect to this basis may be developed. T Unlike the Cornish Fisher expansion which is asymptotic in nature Takemura’s ap- proachyieldsaconvergentseriesintheL2 norm. Notehoweverthecomputationofthe Fourier coefficients usually requires numerical quadrature and that for approximation 9 purposes the L∞ norm is preferred, see Shaw et al. (2011) for details. We will discuss theCornishFisherexpansionandTakemura’sapproachinmoredetailinchapter4. After a brief introduction to the theory of quantile functions in chapter 2 we mo- tivatethediscussionwithachapteronapplicationsandanotheronexistingmethods. In chapter 5 we discuss some general techniques used to solve non-linear ordinary differ- entialequations. Thesewillbeemployedinchapter6,whereweprovideseriesrepres- entations for some quantile functions not currently available. Key to this approach is theavailabilityofthedensityfunction. Inchapter7somealternativeapproachesreliant insteadonthecharacteristicanddistributionfunctionsrespectivelyareinvestigated. As aresultseriesrepresentationsfortheα-stablequantilefunctionwillbepresented. The fact that a convergent series for a specific quantile function is available may seemtoindicatethatthecomputationofsuchafunctionisofnoconcern. Howeverfor moderncomputingsystemsthisissimplynotthecase,since: • theyarelimitedinspeed;abigconcernforslowlyconvergingpowerserieswhen adesiredaccuracyisrequired, • canonlyrepresentafiniterangeofnumbers;thetermsoftheseriesmaybecome extremelysmallorlargeleadingtounderflowandoverflowerrorsrespectively, • and can only perform finite precision arithmetic; which of course is a problem formostnumericalcomputations. Itisforthesereasonsseriesaccelerationtechniques(BrezinskiandZaglia,1991)prove so useful, and we will use them to good affect in our numerical experiments discussed in chapter 8. Here the reader will find many useful recipes to construct algorithms for approximating Q. The key here is to apply a change of variable. To this end we will employ a technique devised by Shaw et al. (2011), albeit from a slightly different perspective,andconsequentlytackletheproblemofapproximatingQ. Anoverviewof aC++programimplementingtheseideasispresentedinsection8.9. Tosummarizethekeycontributionsinthisthesisareprovidedinchapters6and8. Chapter6willbeconcernedwiththedevelopingthe“ingredients”requiredtoconstruct numerical recipes for approximating Q. In particular we write down some functional identities and develop some series representations in this chapter. In chapter 8 we put togethersomenumericalrecipesbasedontheseingredients,forexample • wedeviseastrategybasedoncontinuedfractions, • using the methods of Thacher (1964) and Sidi (1975) we construct Chebyshev- Padéapproximants,

Description:
The Cornish Fisher expansion expresses the u-quantile of a random It is for these reasons series acceleration techniques (Brezinski and Zaglia,
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.