ebook img

Sequential joint signal detection and signal-to-noise ratio estimation PDF

0.27 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Sequential joint signal detection and signal-to-noise ratio estimation

SEQUENTIALJOINTSIGNALDETECTIONANDSIGNAL-TO-NOISERATIOESTIMATION M.Fauß∗,K.G.Nagananda†,A.M.Zoubir∗,andH.V.Poor‡ ∗ SignalProcessingGroup,DarmstadtUniversityofTechnology,D-64283Darmstadt,Germany † Dept. ofElectronicsandCommunicationsEngineering,PESUniversity,Bangalore560085,India ‡ Dept. ofElectricalEngineering,PrincetonUniversity,Princeton,NJ08544,USA ABSTRACT signal-to-noiseratio(SNR),specificallysignalandnoisepowers,un- 7 derthe“signalpresent”hypothesis.Forexample,inspeechprocess- 1 Thesequentialanalysisoftheproblemofjointsignaldetectionand ing,itwasshownin[17],[18]thattheperformanceofvoicedetec- 0 signal-to-noiseratio(SNR)estimationforalinearGaussianobser- tion systems can be drastically improved by jointly estimating the 2 vationmodelisconsidered.Theproblemisposedasanoptimization noisepowerandaprioriSNR.In[19],itwasshownthataschedul- n setupwherethegoalistominimizethenumberofsamplesrequired ing scheme performed detection in an energy-efficient manner by a toachievethedesired(i)typeIandtypeIIerrorprobabilitiesand(ii) jointly estimating the SNR. However, [20] reported that the tech- J meansquarederrorperformance. Thisoptimizationproblemisre- niquesdevelopedinsomeofthepapersmentionedabovewerenot 9 ducedtoamoretractableformulationbytransformingtheobserved readily applicable to the problem of joint detection and signal and 1 signalandnoisesequencestoasinglesequenceofBernoullirandom noisepowerestimation. ForaBayesianformulation,itwasshown ] vBaerrinaobulelsli;sjeoqinutendceet.ecTtihoinstarnandsfeosrtimmaattiioonnreisndtheersnthpeerpforormbleedmoenastihlye [o2f0t,heSedcis.trIiIbIu]titohnatokfntohweluendkgneoowfnthpearpamrioertserPsrw(Has0n)oatnadmPern(aHbl1e)foorr T solvable, and results in a computationally simpler sufficient statis- problemsaddressedin[17]-[19]. Instead,anoptimalsolutionfor I tic compared to the one based on the (untransformed) observation Gaussianobservationmodelswaspresentedusingconjugatepriors . s sequences. Experimentalresultsdemonstratetheadvantagesofthe onthesignalandnoisepowers[20,Sec.IV]. c proposed method, making it feasible for applications having strict In this paper, we extend the problem of joint signal detection [ constraintsondatastorageandcomputation. and SNR estimation, without a priori knowledge of the signal or 1 Index Terms— Sequential analysis, Bernoulli transformation, noise powers, to a sequential setting and propose a novel method v jointdetectionandestimation. toaddressthisproblem. Tothebestofourknowledge,thesequen- 7 tialanalysisofthisproblemhasnotbeenreportedintheliterature. 9 1. INTRODUCTION Theproblemofdistinguishingbetweentwohypotheses(signalab- 2 sentandsignalpresent)andatthesametimeestimatingtheSNRina 5 The joint problem of distinguishing between different hypotheses Gaussianobservationmodelisposedasanoptimizationsetup,where 0 and estimating the unknown parameters based on the outcome of weseektominimizethenumberofsamplesrequiredtoachievethe . thehypothesestesthasreceivedconsiderableattentionintheliter- 1 desired(i)typeIandtypeIIerrorprobabilitiesand(ii)meansquared ature [1] - [6]. Such a problem arises in a wide range of applica- 0 error (MSE) performance. Our approach comprises transforming tions,including(i)radiographicinspectionfordetectinganomalies 7 the observed signal and noise sequences to a single sequence of inmanufacturedobjectsand estimating theirpositionandsize[7], 1 Bernoullirandomvariables,andthenperformingthedetection-and- (ii)retrospectivechangepointhypothesestestingtodetectchangein : estimationtaskontheresultingBernoullisequence. v thestatisticsandsimultaneouslyestimatethetimeofchange[8],[9], i (iii)jointlydetectingthepresenceofmultipleobjectsandestimating Oneofthemainadvantagesofthistransformationisthatitsig- X nificantlyreducesthecomplexityoftheoptimizationproblemsothat theirstatesusingimageobservations[10],and(iv)distinguishingbe- r tweentwohypothesesandatthesametimeestimatingtheunknown it can be solved more efficiently. Secondly, we obtain a computa- a tionallysimplersufficientstatisticcomparedtotheonethatemerges parameters in the accepted hypothesis in a distributed framework whensolvingtheproblemdirectly.Moreover,weshowthatthepro- [11]. Somepopulartechniquestoaddressthisproblemincludere- posedmethodallowsformoredegreesoffreedomthananequiva- formulating the composite detection problem as a pure estimation lent Bayesian solution. Experimental results show that (i) the ex- problem[12],whilethemaximumaposterioriestimatewasshown pectednumberofmeasurementsrequiredtoachievethedesiredper- toprovideasolutiontothejointdetectionandestimationproblemin formancealmostremainsconstantforincreasingvaluesofSNR,and aBayesiancontext[13]. Theproblemhasalsobeenaddressedina (ii)manyoftheconstraintsinthetransformedoptimizationproblem sequentialsetting,wheretheobjectiveistominimizethenumberof areinactivewhichrenderstheproblemeasilysolvable.Assuch,the samplessubjecttoaconstraintonthecombineddetectionandesti- methoddevelopedinthispaperisfeasibleespeciallyforapplications mationcost[14],[15]. Thegeneralizedsequentialprobabilityratio withstrictconstraintsondatastorageandcomputation. testwaspresentedin[16],whereadecisionwasobtainedusingthe maximumlikelihoodestimateoftheunknownparameter. InSection2,wepresenttheproblemstatement.InSection3,we Thereisanotherclassofproblemswhereitisdesirabletodis- detailthetransformationoftheobservationstoaBernoullisequence, tinguish between the hypotheses and simultaneously estimate the andshowhowtheoriginaloptimizationproblemcanbereformulated into a setup which can be solved efficiently. Results of computer ThisresearchwassupportedinpartbytheU.S.NationalScienceFoun- simulationsarepresentedinSection4.Concludingremarksarepro- dationunderGrantsCNS-1456793andECCS-1343210. videdinSection5. 2. PROBLEMFORMULATION of the samples from both sequences and take an additional sam- ThefollowinglinearGaussiansignalmodelisconsidered: ple from the one whose sum is smaller. Whenever the additional samplechangestheorderofthetwosums,theprocedureoutputsa x[n]=s[n]+w[n], n=1,2,..., (1) 0 or 1 depending on which sequence the sample was drawn from. wszeh(cid:44)roer{emsxe[1a]n(cid:44),sG[{2ax]u,[s1.s].i,a.xn}[2ara]n,nd.d.wo.m}(cid:44)dve{anrwioa[tb1el]se,swthc[e2os]r,er.et.sop.fo}ondbdesinneorgvteatotsieotthnseso,sfwiig.hin.idalel. wEmt˜ossiswn[˜ekns{],txi(cid:44)aosl[rlky(cid:80)v],,icgwkn˜ei=vsv[e1knew]r˜}sx[a.n,Ia]n2on,ctdhcaeuwn˜rds,eayqwtuteeh(cid:44)nedceke{fiiytyhn[e,1sla]xe,mtystp[[hk2lee]],.i.(cid:44)th.T.thr}(cid:80)ea,nnknwst=ihhti1eeorxnBe[fneyrr]o[n2kmo]auxnl=ldsi uanndknnoowisne,,arnedsptehcetivSeNlyR. iTshgeivveanribanycθes=σs2σ≥s2.0Tahnedpσrow2bl>em0isatroe sequenceisb(cid:44){b[1],b[2],...},where distinguishbetweenthetwohypotheses σw2 b[m]=(cid:40)0, ifw˜s[km]<xs[km], (7) 1, otherwise. (cid:40) H :θ=0 (signalabsent), 0 (2) H1 :θ θmin (signalpresent), In [21], it was proved that irrespective of the actual values of σs2 ≥ andσ2,theoutputbisasequenceofi.i.d. Bernoullirandomvari- w and at the same time estimate the SNR under the hypothesis H ableswithsuccessprobabilityρ= 1 ,therebyestablishingaone- 1 θ+2 usingasfewsamplesaspossible, whilesatisfyingpredefinedcon- to-onecorrespondencebetweenθ andρ. Therefore, (2)canbere- straints on the type I and type II error probabilities. In (2), θ hypothesizedintermsofρ,i.e., min denotestheminimumSNRforwhichreliabledetectionistobeguar- (cid:40) anteed. Weattempttojointlysolvetheproblemofsignaldetection H0 :ρ=0.5 (signalabsent), (8) andSNRestimationinasequentialsetting. Whilethelatterenables H :ρ ρ (signalpresent), 1 max ≤ onetoadaptthenumberofsamplestothequalityofrealizations,the formerensuresthatthedualobjectiveofdetectionandestimationis whereρ = 1/(θ +2). Theoptimizationsetup(3)-(6)can max min achievedwithadesiredperformance. Essentially,theproblemcan bereformulatedas beformulatedasthefollowingoptimizationsetup: min Eρ∗[M] (9) min Eθ∗[N] (3) ψ,δ,θ˜ ψ,δ,θˆ subjectto subjectto P0(δM =1) α, (10) ≤ P0(δN =1)≤α, (4) Pρ(δM =0) β(ρ), ρ ρmax, (11) ≤ ∀ ≤ PEθθ((cid:104)δ(NθˆN=0)θ)≤2(cid:105)β(θγ),(θ)∀,θ≥θθminθ,min, ((56)) Eρ(cid:104)(θ˜M − ρ1)2(cid:105)≤γ(ρ), ∀ρ≤ρmax, (12) − ≤ ∀ ≥ where θ˜ = θˆ 2 is an estimator for θ that is biased in order to whereN denotesthesamplenumberatwhichthesequentialtestis simplifytheex−pressionundertheexpectedvalue. P0()andPρ() terminated, ψn,δn ∈ {0,1}denotethestoppinganddecisionrule denote the probabilities of an event under hypothesis H· 0 and H1·, after the nth sample has been observed, and θˆn is an estimator for respectively, corresponding to (8). M denotes the sample number θ.Theconstantθ∗isanominalSNRvalueunderwhichtheaverage of b at which the procedure is terminated. Since it takes multiple samplenumber(ASN)istobeminimum.P0()andPθ()denotethe observationsofxandw˜ togenerateoneobservationofb,N isin · · probabilitiesofaneventunderhypothesisH0andH1,respectively. generallargerthanM. Moreover,N includesobservationsofw˜ as ThetypeIandtypeIIerrorprobabilitiesareboundedbyαandβ, wellasx. However,byformulatingtheproblemintermsofband respectively,withβ beingallowedtodependonthetrueSNR.The ρ, weaimatminimizingtherequiredsamplesofb, irrespectiveof meansquareerror(MSE)oftheestimatorθˆisboundedbyafunction thenumberofobservationsofxandw˜ areusedtogeneratethese γ(). samples. Duetothisdifferenceintheobjective,bothproblemfor- · Weassumeknowledgeofasequenceofnoise-onlyrealizations mulationsarenotstrictlyequivalentsothattheproposedprocedure w˜ (cid:44) [w˜ ,w˜ ,...], that can either be recorded before performing cannotbeguaranteedtobestrictlyoptimal. Amoredetailedanal- 1 2 thetest,orcanbegeneratedonthefly,forexample,viaanidentical ysisofthelossincurredbyapplyingBirnbaum’stransformationis sensor that is shielded from the external signal, but otherwise ex- asubjectoffutureresearch. Alsonotethat, dependingonthecost posedtothesameenvironmentalconditions.Withoutw˜,thetesting involvedinsamplingfromxandw˜,onecanmodifythetransforma- problemcannotbesolvedforthesetupconsideredinthispaper. tiontorequiremoreorfewersamplesfromacertainsequence.This additionalpotentialforoptimizationisnottakenintoaccountinthis 3. SOLUTIONMETHODOLOGY work.Formoredetailsonthetransformationanditsnear-optimality Our approach comprises the following two steps: (i) the two se- propertiessee[21]. quencesxandw˜ aretransformedtoasinglesequenceofBernoulli 3.2. Jointdetectionandestimation random variables, whose success probability is determined by the Inordertosolve(9),wefirstcalculateitsLagrangiandual.Forfixed trueSNR,and(ii)asequentialjointdetectionandestimationproce- Lagrangemultipliers,itresultsinanunconstrainedoptimalstopping dureisappliedtothisBernoullisequence. problemthatcanbesolvedbymeansofdynamicprogramming.We 3.1. TransformationtoaBernoullisequence thenchoosetheLagrangemultiplierssuchthattheproceduresatis- ThetwoGaussiansequencesxandw˜ aretransformedintoasingle fiestheconstraintsontheerrorprobabilitiesandthedesiredestima- BernoullisequencebusingBirnbaum’ssequentialprocedure[21]as tionaccuracy.Foranalyticaltractability,werelaxtheconstraintsun- follows: At every time step, we calculate the sum of the squares derH1toholdforallρ P,whereP(cid:44) ρ1,...,ρK isadiscrete ∈ { } subsetof[0,ρmax].Thatis,weboundPρk(d=0)andEρk[(θ˜−ρ1)2] mintermin(20)signifiesthedetectioncostifthedecisionrule(17) onlyatafinitenumberofgridpoints;β(θ)andγ(θ)will,therefore, isemployed,whilethelasttwotermscorrespondtotheestimation beapproximatedforpointsin-between. Fortheproblemconsidered cost, i.e., the deviation of the estimator θ˜∗ from the true SNR. At inthiswork,theseapproximationsareshowntobereasonablyaccu- firstglance,theoptimaldecisionruleaswellastheoptimalestima- rate(seeexamplesinSection4). torseemequivalenttoBayesiansolutionsbecauseofthefollowing TheLagrangiandualproblemof(9),with[0,ρmin]replacedby reason: ThetermEλm0,m1 canbeinterpretedastheposteriorprob- PandLagrangemultipliersλ RK+1andµ RK,isgivenby abilityofH1 giventheobservations b[1],...,b[m] andtheprior ∈ ∈ λ(ρ)thathasbeenscaledbyacostc{oefficient. Sim}ilarly, i 0, (cid:40) (cid:88)K (cid:41) thetermsEµm,i0,m1 canbeinterpretedastheconditionalmom∀en≥tsof max L(λ,µ) λ0α (λkβ(ρk)+µkγ(ρk)) , (13) theposteriordistributionofρ(or, θ)withpriorµ, andtheoptimal λ,µ≥0 − −k=1 estimatorθ˜∗astheposteriorexpectedvalueofθ 2. − However,theproposedschemeisnotequivalenttotheBayesian (cid:40) procedure.Notethat,λandµbothbehaveas“priors”forρ,butcan L(λ,µ)= min Eρ∗[M]+λ0P0(δM =1) bechosenindependently.FortheproposedapproachtobeBayesian, ψ,δ,θ˜ onewouldrequireλ = µ. Inthecaseofasingleconstraintunder (cid:88)K (cid:16) (cid:104) (cid:105)(cid:17)(cid:41) eitherhypothesis,thecorrespondingLagrangemultipliercanalways + λkPρk(δM =0)+µkEρk (θ˜M − ρ1k)2 , (14) beinterpretedasapriordensityscaledbyacostcoefficient,sothat k=1 theoptimalmethodnecessarilyhasaBayesianequivalent;compare where ρk ∈ P. Following the techniques developed in [22], [23], tthweocLlaasgsriacnlgikeemlihuoltoipdl-ireartsioλteasntd[2µ4]c.orIrnesopuornadpptorotawcoh,dhifofwereevnetr,cothne- (14)canbestraightforwardlysolvedasfollows,whereweomitthe straintsunderthesamedistribution,sothatthereisnoequivalence detailsintheinterestofspace: Letm andm denotethenumber 0 1 totheBayesiansetup. of0’sand1’sobserved. Thelikelihood-ratiosofthecorresponding Returningtothesolutionof(14),themainadvantageoftrans- observationsunderP0andPρk,withrespecttoPρ∗ aregivenby formingGaussiansequencesintoBernoullisequencesisthatthepair Z0m0,m1 = (cid:18)10.5ρ∗(cid:19)m0(cid:18)0ρ.∗5(cid:19)m1, (15) p(mari0s,omn,1d)ibreecctolmyessolavsinugffitchieenptrsotabtliesmticionft{hbe[1S],N.R..-d,ob[mma]i}n.rIenqcuoirmes- − a more complicated sufficient statistic, which will include obser- Zm0,m1 = (cid:18)1−ρk(cid:19)m0(cid:18)ρk(cid:19)m1. (16) vations from x and w˜ as well as their empirical variances. Given k 1 ρ∗ ρ∗ a maximum sample number m¯, the matrices R,G Rm¯×m¯ can − ∈ W(cid:80)eKk=de1fiρn−kei,µ∀kiZ≥km00,m,E1.λmT0h,me1op(cid:44)tim(cid:80)alKkd=e1ciλsikoZnkmru0l,emδ1∗ainsdgiEveµmn,i0b,my1 (cid:44) bRmeme¯rc,iamc¯lac.lulylSaitsnetcadebvlteihaefobsratcamktewodvaeardrraiatrebellcyeusrlsaairrogeneinwvtaietlghueesrssta,ortfthinmisg0rpeoacniundrtsimGonm1¯.i,sm¯Tnhu=e- δm∗0,m1 =(cid:40)10,, λλ0ZZ0mm00,,mm11 ≤>EEλmm00,,mm11,, (17) finstinonapglpeoinlfegtmhreeuntletessot,f(gtih.ieve.e,rnmecb0uyr=s(i1om7n)i1sa=nRd00,(0)1,w9w)h,heirncehsthpieescotthpivetiecmloya,sltadarteecthuisesieobdnegaainnndd- 0 0 λ λ and µ are given, i.e., L(λ,µ) = R0,0(λ,µ). Once we are able andtheoptimalestimatorθ˜∗by toevaluateL(λ,µ),theLagrangemultipliescanbedeterminedby solving(13)forλandµ. SincebyconstructionL(λ,µ)isjointly Em0,m1 concaveinλandµ,thisisaconvexoptimizationproblemthatcan θ˜∗ = µ,1 . (18) besolvedusingstandardalgorithms,asshowninthenextsection. m0,m1 Em0,m1 µ,0 4. EXPERIMENTALRESULTS Theoptimalstoppingruleψ∗isobtainedas In this section, we present results of two numerical experiments. (cid:40) whichprovideinterestinginsightsintothestructureofthejointde- ψm∗0,m1 = 01,, GGmm00,,mm11 =>RRmm00,,mm11,, (19) t[ec3tiodnB,a1n0ddeBst]iwmiatthiognridprpoobilnetms.atTinhteegSeNrRvaliusecsh,oi.see.,nθikn=the10rak1n−0g4e, where k−= 1,...,14. The nominal SNR value θ∗ is set at 3dB. The target error probabilities are identical for both experiments, with Gm0,m1 =min[λ0Z0m0,m1, Eλm0,m1] αrela=tivβe((θo)rn=or0m.0al5i.zeAd)sMaSmEeaissuurseedfoarntdheboeustnidmeadtiboynaacccounrsatcayn,t.thIne +Em0,m1 (Eµm,10,m1)2 (20) ordertomatchtheproblemformulationinSection2,theconstraint µ,2 − Em0,m1 canbeexpressedintermsoftheabsoluteMSEandanSNRdepen- µ,0 dentboundγ(θ) = cθ2 or,intermsofρ,asγ(ρ) = c(1/ρ 2)2. andRm0,m1 isdefinedrecursivelyasfollows Forthefirstexperiment,c=0.1,whileforthesecondc=0.−25. For the numerical solution of (13), we employed the Subplex Rm0,m1 =min[Gm0,m1 , algorithm[25]asimplementedin[26]. ItappliestheNelder–Meat 1+ρ∗Rm0,m1+1+(1−ρ∗)Rm0+1,m1]. (21) sdiimmpelnesxioanlgaolrsiuthbmspa[2ce7s]ainndardeopeesanteodtrfeaqshuiiorentohnescuailtcaubllayticohnoosefngrlaodwi-- ThequantitiesGm0,m1 andRm0,m1 correspondtothecostin- ents,whichiscomputationallyintensivefortherecursively-defined curredforstoppingimmediately,orstoppingattheoptimaltimein- cost function (13). By limiting the search to subspaces, the algo- stant, giventhatm 0’sandm 1’shavebeenobserved. Thepro- rithm can exploit the sparsity in the optimal Lagrange multipliers. 0 1 cedureisstoppedforthefirsttimewhenGm0,m1 = Rm0,m1. The Since there is no formal proof of convergence, the Subplex solu- tionwassubsequentlyverifiedbyevaluatingitsfirst-orderoptimality ty 0.05 c=0.25 conditions. ThemaximumnumberofBernoullisampleswassetto bili c=0.1 m¯ =400,whichprovedtobesufficient. ba 0.04 o r P 0.03 r c=0.25 o 150 c=0.1 Err 0.02 e I u I al e 0.01 V 100 yp al T m 0 Opti 50 −3 −2.5 −2 SNR−1in.5dB −1 −0.5 0 0 0.25 λ0 µ1 µ14 E 0.2 Lagrange Multipliers S M 0.15 e Fig. 1: Optimal Lagrange multipliers for α = β(θ) = 0.05 v ti and c 0.1,0.25 . The multipliers are plotted in the order a 0.1 ∈ { } el λ0,...,λ14,µ1,...,µ14. Thetwoclippedvaluesareµ1 =502.77 R andµ3 =307.37. 0.05 c=0.25 c=0.1 0 InFig.1,theoptimalLagrangemultipliersaredepictedforboth 2 0 2 4 6 8 10 experiments. Itisinterestingtonotethatinbothcasesthesolution − SNR in dB is sparse, which implies that most of the performance constraints areinactive. ConsideringtheverycoarseSNRgrid,thisoutcomeis Fig.2: Detectionandestimationperformanceoftheproposedalgo- ratherunexpectedandsuggeststhatinpracticeveryfewconstrains rithmforα=β(θ)=0.05andc 0.1,0.25 . canbesufficienttoboundtheperformanceoverlargeSNRintervals. ∈{ } ThiscanalsobeseeninFig.2,wherethetypeIIerrorprobabilities andtherelativeMSEareplottedovertherangeofSNRs.Theresults wereobtainedbyaveragingover104 MonteCarlosimulationsand r From x, c=0.25 e the SNR interval was sampled at intervals of size 0.1dB. Within mb 600 From w˜, c=0.25 the numerical accuracy, the performance requirements are met or Nu From x, c=0.1 exceededforallSNRvaluesinthefeasibleinterval. Especiallythe e From w˜, c=0.1 typeIIerrorprobabilitiesarewellbelowtherequired5%forallSNR pl 400 m values. For c = 0.1, the estimation constraint is so much tighter a than the detection constraint that the latter is virtually deactivated, S e i.e., the corresponding Lagrange multipliers are close to zero (see g 200 a Fig.1). TheconstraintsontherelativeMSEarestrictersothatthe er v boundisreachedoverlargeregionsoftheSNRinterval.Considering A thattheperformanceisrestrictedtointegervaluesoftheSNR,itis 0 2 0 2 4 6 8 10 remarkablethattherequirementsaresatisfiedovertheentireinterval. − Theaveragenumberofsamplesdrawnfromtheobservationse- SNR in dB quencexandthereferencesequencew˜ isshowninFig.3. Asex- Fig.3: Theaveragenumberofsamplesdrawnfromtheobservation pected,ASNsforbothcasesarehighforlowSNRsanddecreasefor referencesequencesversusSNR. higherSNRs. BothASNsreachaminimumataround3dB,which correspondstothenominalSNRthatwastargetedintheminimiza- tionprocedure.ForlargeSNRvalues,thenumberofsamplesdrawn from the reference sequence increases again, while the number of samples generated by the signal itself stays almost constant. This formationleadstoasimplerreformulationofthemainoptimization isadesirableproperty,consideringthatgeneratingtrainingsamples problem, which can be efficiently solved. The expected minimum isusuallyeasierthantakingphysicalmeasurements. Themodesat numberofsamplesrequiredtoachievethedesiredperformancere- lowandhighSNRvaluesareduethedetectionandestimationcon- mainsalmostconstantforincreasingvaluesofSNR.Wealsoobtain straints,respectively. asufficientstatisticforthetestwhichisveryeasytocompute. Ex- perimentalresultsindicatethatmanyconstraintsontheoptimization 5. CONCLUDINGREMARKS setupareinactive,whichrenderstheproblemeasilysolvable.These WehaveconsideredtheproblemofjointsignaldetectionandSNR results indicate the feasibility of the proposed method to practical estimation for a linear Gaussian model in a sequential framework. applications.Understandingtheimplicationsofnon-stationarynoise The central idea of our approach is to transform the observed se- processesontheperformanceoftheproposedapproachespeciallyin quences to a sequence of Bernoulli random variables. This trans- thehigh-SNRregimeisoneofthemainavenuesforfutureresearch. 6. REFERENCES [16] X.Li,J.Liu,andZ.Ying, “Generalizedsequentialprobabil- ityratiotestforseparatefamiliesofhypotheses,” Sequential [1] D.MiddletonandR.Esposito, “Simultaneousoptimumdetec- Analysis,vol.33,no.4,pp.539–563,2014. tionandestimationofsignalsinnoise,” IEEETransactionson [17] J. Sohn and W. Sung, “A voice activity detector employing InformationTheory,vol.14,no.3,pp.434–444,May1968. softdecisionbasednoisespectrumadaptation,” inProc.IEEE [2] A. Fredriksen, D. Middleton, and V. VandeLinde, “Simulta- InternationalConferenceonAcoustics,SpeechandSignalPro- neoussignaldetectionandestimationundermultiplehypothe- cessing,May1998,vol.1,pp.365–368. ses,”IEEETransactionsonInformationTheory,vol.18,no.5, [18] J.Sohn,N.S.Kim,andW.Sung, “Astatisticalmodel-based pp.607–614,Sept.1972. voiceactivitydetection,” IEEESignalProcessingLetters,vol. [3] G.V.Moustakides,G.H.Jajamovich,A.Tajer,andX.Wang, 6,no.1,pp.1–3,Jan.1999. “Joint detection and estimation: Optimum tests and applica- [19] L. Le, D. M. Jun, and D. L. Jones, “Energy-efficient detec- tions,” IEEETransactionsonInformationTheory,vol.58,no. tionsystemintime-varyingsignalandnoisepower,” inProc. 7,pp.4215–4229,July2012. IEEEInternationalConferenceonAcoustics,SpeechandSig- [4] J.Chen,Y.Zhao,A.Goldsmith,andH.V.Poor,“Optimaljoint nalProcessing,May2013,pp.2736–2740. detectionandestimationinlinearmodels,”inIEEEConference [20] L.LeandD.L.Jones, “Optimalsimultaneousdetectionand onDecisionandControl,Dec.2013,pp.4416–4421. signal and noise power estimation,” in IEEE International [5] S.LiandX.Wang, “JointcompositedetectionandBayesian SymposiumonInformationTheory,June2014,pp.571–575. estimation: ANeyman-Pearsonapproach,” inIEEEGlobal [21] A.Birnbaum, “Sequentialtestsforvarianceratiosandcompo- ConferenceonSignalandInformationProcessing,Dec.2015, nentsofvariance,” AnnalsofMathematicalStatistics,vol.29, pp.453–457. no.2,pp.504–514,June1958. [6] S. Li and X. Wang, “Optimal joint detection and estimation [22] A.Novikov,“Optimalsequentialtestsfortwosimplehypothe- basedondecision-dependentBayesiancost,” IEEETransac- ses,” SequentialAnalysis,vol.28,no.2,pp.188–217,2009. tions on Signal Processing, vol. 64, no. 10, pp. 2573–2586, May2016. [23] M.FaußandA.M.Zoubir, “Alinearprogrammingapproach tosequentialhypothesistesting,” SequentialAnalysis,vol.34, [7] L.Fillatre,I.IgorNikiforov,andF.FlorentRetraint, “Asim- no.2,pp.235–263,2015. plealgorithmfordefectdetectionfromafewradiographies,” JournalofComputers,vol.2,no.6,pp.26–34,Aug.2007. [24] E.L.LehmannandJ.P.Romano, TestingStatisticalHypothe- ses,Springer,NewYorkCity,NewYork,USA,3edition,2005. [8] A.VexlerandC.Wu, “Anoptimalretrospectivechangepoint detectionpolicy,” ScandinavianJournalofStatistics,vol.36, [25] T.H.Rowan,FunctionalStabilityAnalysisofNumericalAlgo- no.3,pp.542–558,Sept.2009. rithms,Ph.D.thesis,TheUniversityofTexasatAustin,Austin, TX,USA,1990, UMIOrderNo.GAX90-31702. [9] S.Boutoille,S.Reboul,andM.Benjelloun, “Ahybridfusion systemappliedtooff-linedetectionandchange-pointsestima- [26] S.G.Johnson, “TheNLoptnonlinear-optimizationpackage,” tion,” InformationFusion,vol.11,no.13,pp.325–337,Oct. http://ab-initio.mit.edu/nlopt. 2010. [27] J. A. Nelder and R. Mead, “A simplex method for function [10] B.N.Vo,B.T.Vo,N.T.Pham,andD.Suter, “Jointdetection minimization,” TheComputerJournal,vol.7,no.4,pp.308– andestimationofmultipleobjectsfromimageobservations,” 313,1965. IEEETransactionsonSignalProcessing, vol.58, no.10, pp. 5129–5141,Oct.2010. [11] H. Zhu, P. Zhang, Y. Lin, and J. Liu, “Joint detection and estimation fusion in distributed multiple sensor systems,” in International Conference on Information Fusion, July 2016, pp.805–810. [12] A.Ghobadzadeh,S.Gazor,M.R.Taban,A.A.Tadaion,and M.Gazor, “Separatingfunctionestimationtests: Anewper- spectiveonbinarycompositehypothesistesting,”IEEETrans- actionsonSignalProcessing,vol.60,no.11,pp.5626–5639, Nov2012. [13] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Ve- htari,andD.B.Rubin, BayesianDataAnalysis, CRCPress,3 edition,2013. [14] Y.Yilmaz,G.V.Moustakides,andX.Wang, “Sequentialjoint detectionandestimation,” TheoryofProbability&ItsAppli- cations,vol.59,no.3,pp.452–465,2015. [15] Y. Yılmaz, S. Li, and X. Wang, “Sequential joint detection andestimation:Optimumtestsandapplications,”IEEETrans- actionsonSignalProcessing,vol.64,no.20,pp.5311–5326, Oct.2016.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.