ebook img

Sensing Vehicle Conditions for Detecting Driving Behaviors PDF

81 Pages·2018·4.096 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Sensing Vehicle Conditions for Detecting Driving Behaviors

SPRINGER BRIEFS IN ELECTRICAL AND COMPUTER ENGINEERING Jiadi Yu · Yingying Chen · Xiangyu Xu Sensing Vehicle Conditions for Detecting Driving Behaviors 123 SpringerBriefs in Electrical and Computer Engineering Serieseditors Woon-SengGan,NanyangTechnologicalUniversity,Singapore,Singapore C.-C.JayKuo,UniversityofSouthernCalifornia,LosAngeles,CA,USA ThomasFangZheng,TsinghuaUniversity,Beijing,China MauroBarni,UniversityofSiena,Siena,Italy SpringerBriefs present concise summaries of cutting-edge research and practical applicationsacrossawidespectrumoffields.Featuringcompactvolumesof50to 125 pages, the series covers a range of content from professional to academic. Typicaltopicsmightinclude:timelyreportofstate-of-theartanalyticaltechniques, a bridge between new research results, as published in journal articles, and a contextualliteraturereview,asnapshotofahotoremergingtopic,anin-depthcase study or clinical example and a presentation of core concepts that students must understandinordertomakeindependentcontributions. Moreinformationaboutthisseriesathttp://www.springer.com/series/10059 Jiadi Yu • Yingying Chen • Xiangyu Xu Sensing Vehicle Conditions for Detecting Driving Behaviors 123 JiadiYu YingyingChen DepartmentofComputerScience WINLAB &Engineering RutgersUniversity ShanghaiJiaoTongUniversity NewBrunswick,NJ,USA Shanghai,Shanghai,China XiangyuXu DepartmentofComputerScience &Engineering ShanghaiJiaoTongUniversity Shanghai,Shanghai,China ISSN2191-8112 ISSN2191-8120 (electronic) SpringerBriefsinElectricalandComputerEngineering ISBN978-3-319-89769-1 ISBN978-3-319-89770-7 (eBook) https://doi.org/10.1007/978-3-319-89770-7 LibraryofCongressControlNumber:2018939025 © The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbytheregisteredcompanySpringerInternationalPublishingAGpart ofSpringerNature. Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface As more vehicles take part in the transportation system in recent years, driving or taking vehicles has become an inseparable part of our daily life. However, the increasing number of vehicles on the roads brings more traffic issues including crashes and congestions, which make it necessary to sense vehicle conditions and detectdrivingbehaviorsforbothdriversandotherparticipantsinthetransportation system. For example, sensing lane information of vehicles in real time can be assisted with the navigators to avoid unnecessary detours, and acquiring instant vehiclespeedisdesirabletomanyimportantvehicularapplications,suchasvehicle localization,andbuildingintelligenttransportationsystems.Moreover,ifthedriving behaviors of drivers, such as inattentive and drunk driving, can be detected and warnedintime,alargepartoftrafficaccidentscanbeprevented.Inaddition,vehicle dynamicsanddrivingbehaviorscanalsobeappliedinthewayofcrowdsensingto helpthetrafficplanersanalyzethetrafficconditionsandmakeproperdecisions. For sensing vehicle dynamics and detecting driving behaviors, traditional approachesaregroundedonthebuilt-ininfrastructureinvehicles,suchasinfrared sensors and radars, or additional hardware like EEG devices and alcohol sensors. However, currently, only the high-end vehicles are equipped with such a built-in infrastructure,andtheimplementationofadditionaldevicescouldbelessconvenient andcostly.Withthetremendousdevelopmentofmobiledevicesinrecentyears,this bookprovidesadifferentapproachbyutilizingthebuilt-insensorsofsmartphones tosensevehicledynamicsanddetectdrivingbehaviors. The book begins by introducing the concept of smartphone sensing, and also presenting the motivation behind the book and summarizing our contributions to the book. After that, in Chap.2, we propose approaches utilizing built-in sensors insmartphonesforsensingvehicledynamics.Inthischapter,webeginwithsensor dataprocessingincludingcoordinatealignmentanddatafiltering,thenthesensing dataareexploitedtodetectvariousvehicledynamics,includingmoving,drivingon unevenroad,turning,changinglanes,andtheinstantspeedofvehicles.InChap.3, wediscussthedetectionofabnormaldrivingbehaviorbysensingvehicledynamics. Specifically, we propose a fine-grained abnormal Driving behavior Detection and iDentification system, D3, to perform real-time high-accurate abnormal driving v vi Preface behaviorsmonitoringusingthebuilt-inmotionsensorsinsmartphones.D3 system isevaluatedinrealdrivingenvironmentswithmultipledriversdrivingformonths. InChap.4,weexploitthefeasibilitytorecognizeabnormaldrivingeventsofdrivers at early stage. In real driving environment, providing detection results after an abnormal driving behavior is finished is not sufficient for alerting the driver and avoiding car accidents. Thus, early recognition of inattentive driving is the key to improvedrivingsafetyandreducethepossibilityofcaraccidents.Specifically,we developed an Early Recognition system, ER, which recognizes inattentive driving events at an early stage and provides timely alerts to drivers, leveraging built-in audiodevicesonsmartphones.ERsystemisevaluatedinrealdrivingenvironments withmultipledriversdrivingformonths.InChap.5,weprovideanoverviewofthe state-of-the-artresearches.Finally,conclusionsandfuturedirectionsarepresented inChap.6. This book is supported in part by NSFC (No. 61772338, No. 61420106010) andNSF(CNS1409767,CNS1514436).Also,theauthorswouldliketothankProf. Xuemin(Sherman)ShenforprovidingtheopportunitytoworkwithSpringer. Shanghai,People’sRepublicofChina JiadiYu NewBrunswick,NJ,USA YingyingChen Shanghai,People’sRepublicofChina XiangyuXu January15,2018 Contents 1 Overview....................................................................... 1 1.1 BriefIntroductionofSmartphoneSensing.............................. 1 1.1.1 RepresentativeSensorsEmbeddedinSmartphones............ 1 1.1.2 DevelopmentofSmartphoneSensing .......................... 2 1.2 SmartphoneSensinginVehicles ........................................ 3 1.3 OverviewoftheBook.................................................... 4 2 SensingVehicleDynamicswithSmartphones ............................. 7 2.1 Introduction .............................................................. 7 2.2 Pre-processingSensorReadings ........................................ 8 2.2.1 CoordinateAlignment........................................... 8 2.2.2 DataFiltering .................................................... 10 2.3 SensingBasicVehicleDynamics........................................ 11 2.3.1 SensingMovementofVehicles ................................. 11 2.3.2 SensingDrivingonUnevenRoad............................... 12 2.3.3 SensingTurningofVehicles .................................... 13 2.3.4 SensingLane-ChangesofVehicles ............................. 14 2.3.5 EstimatingInstantSpeedofVehicles........................... 17 2.4 Evaluation ................................................................ 20 2.4.1 Setup ............................................................. 20 2.4.2 Metrics ........................................................... 20 2.4.3 PerformanceofSensingVehicleDynamics .................... 21 2.4.4 PerformanceofSensingLane-Change.......................... 21 2.4.5 PerformanceofSensingInstanceSpeed........................ 22 2.5 Conclusion ............................................................... 23 3 SensingVehicleDynamicsforAbnormalDrivingDetection............. 25 3.1 Introduction .............................................................. 25 3.2 DrivingBehaviorCharacterization...................................... 28 3.2.1 CollectingDatafromSmartphoneSensors..................... 28 3.2.2 AnalyzingPatternsofAbnormalDrivingBehaviors........... 29 vii viii Contents 3.3 SystemDesign ........................................................... 30 3.3.1 Overview......................................................... 30 3.3.2 ExtractingandSelectingEffectiveFeatures.................... 32 3.3.3 TrainingaFine-GrainedClassifierModeltoIdentify AbnormalDrivingBehaviors ................................... 33 3.3.4 DetectingandIdentifyingAbnormalDrivingBehaviors ...... 35 3.4 Evaluations............................................................... 37 3.4.1 Setup ............................................................. 37 3.4.2 Metrics ........................................................... 38 3.4.3 OverallPerformance............................................. 38 3.4.4 ImpactofTrainingSetSize ..................................... 40 3.4.5 ImpactofTrafficConditions .................................... 41 3.4.6 ImpactofRoadType ............................................ 41 3.4.7 ImpactofSmartphonePlacement............................... 42 3.5 Conclusion ............................................................... 43 4 SensingDriverBehaviorsforEarlyRecognitionofInattentive Driving ......................................................................... 45 4.1 Introduction .............................................................. 45 4.2 InattentiveDrivingEventsAnalysis..................................... 46 4.2.1 DefiningInattentiveDrivingEvents ............................ 47 4.2.2 AnalyzingPatternsofInattentiveDrivingEvents.............. 48 4.3 SystemDesign ........................................................... 50 4.3.1 SystemOverview................................................ 50 4.3.2 ModelTrainingatOfflineStage ................................ 51 4.3.3 RecognizingInattentiveDrivingEventsatOnlineStage ...... 56 4.4 Evaluation ................................................................ 58 4.4.1 Setup ............................................................. 58 4.4.2 Metrics ........................................................... 58 4.4.3 OverallPerformance............................................. 59 4.4.4 ImpactofTrainingSetSize ..................................... 61 4.4.5 ImpactofRoadTypesandTrafficConditions.................. 62 4.4.6 ImpactofSmartphonePlacement............................... 63 4.5 Conclusion ............................................................... 63 5 State-of-ArtResearches ...................................................... 65 5.1 SmartphoneSensingResearches........................................ 65 5.2 VehicleDynamicsSensingResearches ................................. 66 5.3 DriverBehaviorsDetectionResearches................................. 67 5.4 CommonIssues .......................................................... 68 6 Summary....................................................................... 69 6.1 ConclusionoftheBook.................................................. 69 6.2 FutureDirections......................................................... 70 References.......................................................................... 71 Chapter 1 Overview 1.1 BriefIntroductionofSmartphone Sensing Although early mobile phones are designed to communicate only, modern smart- phones are developed more as a ubiquitous mobile computing device, and thus become more and more central to people’s lives. What makes smartphones even more powerful are the varies kinds of sensors embedded in smartphones. Sensor embedded smartphones are able to set as a platform for numerous applications, suchasrecreationalsports,environmentalmonitoring,personalhealth-care,sensor augmentedgaming,virtualreality,andsmarttransportationsystems. Moreover, the increasing popularity of smartphones and the rapid develop- ment of their sensing capability show great availability for researchers to exploit smartphones for sensing tasks. Meanwhile, with the environments for smartphone applications (e.g., Apple AppStore and Google Android Market) more matured in recent years, it is more convenient for researchers to extend the traditional small scale laboratory-level deployments to large scale experiments in the real-world involvesalargenumberofusers.Together,theseeffectsbringsmartphonesensinga hotresearchissue,wherenewmodels,algorithms,systemsandapplicationsspring upinrecentyears. 1.1.1 RepresentativeSensorsEmbeddedinSmartphones A smartphone can be thought as a small-size mobile computer with sensors. As computers,thecomputation andstoragecapabilitiesofsmartphones keepgrowing every year. As sensing platforms, smartphones integrate varies types of sensors, including accelerometer, gyroscope, magnetometer (compass), GPS, microphone, ©TheAuthor(s),underexclusivelicencetoSpringerInternationalPublishingAG, 1 partofSpringerNature2018 J.Yuetal.,SensingVehicleConditionsforDetectingDrivingBehaviors, SpringerBriefsinElectricalandComputerEngineering, https://doi.org/10.1007/978-3-319-89770-7_1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.