ebook img

Sengodan, Anand (2013) The SIMCA algorithm for processing ground penetrating radar data and ... PDF

327 Pages·2013·40.71 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Sengodan, Anand (2013) The SIMCA algorithm for processing ground penetrating radar data and ...

Sengodan, Anand (2013) The SIMCA algorithm for processing ground penetrating radar data and its practical applications. PhD thesis. http://theses.gla.ac.uk/4177/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] The SIMCA Algorithm for processing Ground Penetrating Radar data and its practical applications. Anand Sengodan Submittedinfulfilmentoftherequirementsforthe DegreeofDoctorofPhilosophy SchoolofComputingScience CollegeofScienceandEngineering UniversityofGlasgow May,2012 (cid:13)c AnandSengodan Abstract The main objective of this thesis is to present a new image processing technique to improve the detectabilityofburiedobjectssuchaslandminesusingGroundPenetratingRadar(GPR).Themain challenge of GPR based landmine detection is to have an accurate image analysis method that is capable of reducing false alarms. However an accurate image relies on having sufficient spatial resolution in the received signal. An Antipersonnel mine (APM) can have a diameter as little as 2cm,whereasmanysoilshaveveryhighattenuationatfrequenciesabove450MHz. In order to solve the detection problem, a system level analysis of the issues involved with the recognitionoflandminesusingimagereconstructionisrequired. Thethesisillustratesthedevelop- ment of a novel technique called the SIMCA (“SIMulated Correlation Algorithm”) based on area or volume correlation between the trace that would be returned by an ideal point reflector in the soil conditions at the site (obtained using the realistic simulation of Maxwell’s equations) and the actual trace. During an initialization phase, SIMCA carries out radar simulation using the system parametersoftheradarandthesoilproperties. ThenSIMCAtakestherawdataastheradarisscannedoverthegroundandusesaclutterremoval techniquetoremovevariousunwantedsignalsofcluttersuchascrosstalk,initialgroundreflection andantennaringing. Thetracewhichwouldbereturnedbyatargetundertheseconditionsisthen used to form a correlation kernel using a GPR simulator. The 2D GPR scan (B scan), formed by abutting successive time-amplitude plots taken from different spatial positions as column vectors, isthencorrelatedwiththekernelusingthePearsoncorrelationcoefficient resultinginacorrelated imagewhichisbrightestatpointsmostsimilartothecanonicaltarget. Thisimageisthenraisedto anoddpower>2toenhancethetarget/backgroundseparation. The first part of the thesis presents a 2-dimensional technique using the B scans which have been produced as a result of correlating the clutter removed radargram (’B scan’) with the kernel produced from the simulation. In order to validate the SIMCA 2D algorithm, qualitative evidence wasusedwherecomparisonwasmadebetweentheBscansproducedbytheSIMCAalgorithmwith B scans from some other techniques which are the best alternative systems reported in the open literature. It was found from this that the SIMCA algorithm clearly produces clearer B scans in comparisontotheothertechniques. Next quantitative evidence was used to validate the SIMCA algorithm and demonstrate that it produced clear images. Two methods are used to obtain this quantitative evidence. In the first methodanexpertGPRuserand4othergeneralusersareusedtopredictthelocationoflandmines fromthecorrelatedBscansandvalidatetheSIMCA2Dalgorithm. Herehumanusersareaskedto indicate the location of targets from a printed sheet of paper which shows the correlated B scans produced by the SIMCA algorithm after some training, bearing in mind that it is a blind test. For thesecondquantitativeevidencemethod,theAMIRAsoftwareisusedtoobtainvaluesoftheburial depth and position of the target in the x direction and hence validate the SIMCA 2D algorithm. Then the absolute error values for the burial depth along with the absolute error values for the position in the x direction obtained from the SIMCA algorithm and the Scheers et al’s algorithm whencomparedtothecorrespondinggroundtruthvalueswerecalculated. Two-dimensionaltechniquesthatuseBscansdonotgiveaccurateinformationontheshapeand dimensions of the buried target, in comparison to 3D techniques that use 3D data (’C scans’). As aresultthenextpartofthethesispresentsa3-dimensionaltechnique. Theequivalent3Dkernelis formed by rotating the 2D kernel produced by the simulation along the polar co-ordinates, whilst the 3D data is the clutter removed C scan. Then volume correlation is performed between the intersecting parts of the kernel and the data. This data is used to create isosurfaces of the slices raisedtoanoddpower>2. To validate the algorithm an objective validation process which compares the actual target volume to that produced by the re-construction process is used. The SIMCA 3D technique and theScheersetal’s(thebestalternativesystemreportedintheopenliterature)techniqueareusedto image a variety of landmines using GPR scans. The types of mines included plastic, wooden and glassones. InallcasesclearimageswereobtainedwithSIMCA.IncontrastScheers’algorithm,the presentstate-of-the-art,failedtoprovideclearimagesofnonmetalliclandmines. Forthisthesis,theabovealgorithmshavebeentestedforlandminedataandforlocatingfounda- tionsindemolishedbuildingsandtovalidateanddemonstratethattheSIMCAalgorithmsarebetter thanexistingtechnologiessuchastheScheersetal’smethodandtheREFLEXW commercialsoft- ware. Acknowledgements Firstly I would like to thank my PhD supervisor, Dr. W. Paul Cockshott for his guidance, support and patience throughout the course of this PhD. It is unlikely I would have come this far without himandthetime,adviceandencouragementhededicatedtomyPhDaregratefullyacknowledged. Iwouldalsoliketothankmysecondsupervisor,Dr. J.PaulSiebertforallhisguidanceandsupport. I would like also to take this opportunity to express my sincere appreciation to all the staff at UniversityofGlasgowfortheirsupportandvaluableassistancethroughoutmyPhD. Iwouldliketoexpressmysincerethankstomyexternalandinternalexaminersandtheconvenor for taking the time to study this thesis extensively, agreeing to examine me and also for taking interestinthiswork. TheauthorwouldliketothankMr. MattGuyandMr. ChrisLeechofGeomatrixEarthScience Ltd, Dr. George Tuckwell (RSK) and Professor John M. Reynolds (Reynolds International Ltd) for reading my thesis and for their time, effort and suggestions and to the various people in the commercial arena for giving their time to review my work and offer me constructive feedback to helpinthesuccessofthisPhD. Furthermore, the author would like to extend his deepest gratitude to Dr. David J. Daniels of Cobham Plc. (formerly ERA Technologies) and for Dr. Erica Utsi for their input into the work completed in this PhD and for Dr. David J. Daniels for giving me the opportunity to undertake a workplacementprogramunderhim. SinceregratitudeisexpressedtoDr. DeanGoodmanofGeophysicalArchaeometryLaboratory Inc, for providing me a student version of the GPR-SLICE software, and for answering questions regardingGPRapplications. ToMs. CarmenCuenca-Garcia,oftheDepartmentofArchaeologyattheUniversityofGlasgow forherguidance,supportandtocompletethecarparksurveywhichprovidedthedatathatenabled metotestmyalgorithminthecaseoflocatingfoundationsindemolishedbuildings. Also to the European researchers and researchers at the Indian Institute of Technology for providingmewiththelandminedata. IwouldliketoacknowledgetheEngineeringandPhysicalSciencesResearchCouncil(EPSRC) andtheUniversityofGlasgowforfundingthisPhD. To the Knowledge Transfer Scotland: Policy and Practice Conference 2010 (Heriot-Watt Uni- versity), for Thales Group (Thales Scottish Technology Prize 2010), and finally to the School of Computing Science at the University of Glasgow for giving me runner up prices. To SET for Bri- tain 2012 for short listing my PhD work to be showcased at the UK House of Parliament. To the ICTPioneersCompetition2012judgesforawardingmethefinalistprizeinthetransformingsociety category. Last,butbynomeansleast,tomyparentsfortheirunconditionallove,supportandencourage- mentovertheyears. WithouttheirhelpandsupportIwouldnothavebeenabletotravelthisjourney and to complete my PhD. For this I dedicate this PhD to them, because without them, life would nothaveanymeanings. MyhopeisalsothatthesuccessfulcompletionofthisPhDwillbringgood healthtomyfatherandmotherandthatthehappinesswillmakethemlivemuchlonger. Finally to the innocent victims of landmines, both civilians and the armed forces. I hope the technology developed by this PhD can be used by civilian mine clearing teams, and also by the armedforcestohelpaddresstheproblemofburieddevices. OriginalityAnnouncement ’I hereby declare that this submission is my own work and to the best of my know- ledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any otherdegreeordiplomaattheUniversityofGlasgoworanyothereducationalinsti- tution, except where due acknowledgement is made in the thesis. Any contribution madetotheresearchbyothers,withwhomIhaveworkedattheUniversityofGlas- goworelsewhere,isexplicitlyacknowledgedinthethesis.’ AnandSengodan Contents 1 Introduction 1 1.1 ContextandMotivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 ClassificationofMines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.1.1 Anti-tankMine(ATM) . . . . . . . . . . . . . . . . . . . . . . 6 1.2.1.2 Anti-personnelMine(APM) . . . . . . . . . . . . . . . . . . . 6 1.2.2 TypesofGPRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 ThesisContributionsandPublications . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4.1 WorkpublishedinConferenceproceedings . . . . . . . . . . . . . . . . . 12 1.4.2 WorktoappearinJournalproceedings . . . . . . . . . . . . . . . . . . . . 12 1.4.3 Prizeswon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4.4 PATENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.5 OverviewofThesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 BackgroundandLiteratureReview 15 2.1 HistoryofLandmines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 LayingofLandmines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.2 LayingofLandminesusedbytheGermanArmy . . . . . . . . . . . . . . 18 2.3 Historyofdeminingtechniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.1 ManualdeminingandMetaldetectors . . . . . . . . . . . . . . . . . . . . 20 2.3.2 AcousticSensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.3 InfraredImaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.4 DogsandRodentdetection . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.5 GroundPenetratingRadar . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4 Typicalprotocolusedintheclearanceoflandmines . . . . . . . . . . . . . . . . . 24 2.5 SinglearrayandMulti-arraySystemsavailableinthemarket . . . . . . . . . . . . 25 2.5.1 Hand-heldsingle-arraysystem . . . . . . . . . . . . . . . . . . . . . . . . 27 2.5.1.1 HSTAMIDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.5.1.2 VallonMINEHOUNDVMR3 . . . . . . . . . . . . . . . . . . . 28 vii CONTENTS viii 2.5.1.3 Advanced landmine imaging system (ALIS) - Hand-held GPR Metaldetectorsystem . . . . . . . . . . . . . . . . . . . . . . . 28 2.5.2 Vehiclebasedmulti-arraysystem . . . . . . . . . . . . . . . . . . . . . . 30 2.5.2.1 Vehiclebasedmulti-arrayroboticsystem . . . . . . . . . . . . . 34 2.6 GPRandGlobalPositioningSystems . . . . . . . . . . . . . . . . . . . . . . . . 35 2.7 SoilpropertiesandtheireffectonGPRperformance . . . . . . . . . . . . . . . . . 36 2.8 GPRdataprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.8.1 ClutterRemoval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.8.1.1 Signalidentificationandanalysis . . . . . . . . . . . . . . . . . 47 2.8.2 GPRMAX2D/3Dv1.5usedforforwardmodelling . . . . . . . . . . . . . 48 2.9 MigrationtechniquetoprocessGPRdata . . . . . . . . . . . . . . . . . . . . . . 51 2.9.1 Explodingsourcemodel . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.9.2 Differenttypesofmigration . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.9.2.1 Diffraction-summationMigration . . . . . . . . . . . . . . . . . 54 2.9.2.2 KirchhoffMigration . . . . . . . . . . . . . . . . . . . . . . . . 55 2.9.2.3 Finite-DifferenceMigration . . . . . . . . . . . . . . . . . . . . 56 2.9.2.4 Frequency-WavenumberMigration . . . . . . . . . . . . . . . . 56 2.9.2.5 Phase-shiftMigration . . . . . . . . . . . . . . . . . . . . . . . 57 2.9.2.6 Migrationbydeconvolution . . . . . . . . . . . . . . . . . . . . 57 2.10 CommercialsoftwareavailableforGPRdataprocessing. . . . . . . . . . . . . . . 61 2.10.1 GPR-SLICEsoftware. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2.10.2 REFLEXWsoftware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.11 SummaryandDiscussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3 SIMCA2Danditsvalidation 68 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.2 Calculatingdepthandvelocityofpropagation . . . . . . . . . . . . . . . . . . . . 71 3.3 Scheersetal’smigrationbydeconvolutionmethod . . . . . . . . . . . . . . . . . 72 3.4 DevelopmentoftheSIMCA2Dtechnique . . . . . . . . . . . . . . . . . . . . . . 73 3.4.1 GPRSimulationscarriedouttodevelopthekernels . . . . . . . . . . . . . 75 3.4.2 RemovalofclutterfromtherawGPRdata . . . . . . . . . . . . . . . . . . 78 3.4.3 ConvolutionandCorrelation . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.5 Resultsusingsimulateddata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.6 Experimentaldatasourceusedinthelaboratorytoobtainthelandminedatausedto testtheSIMCA2Dalgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 I ResultsobtainedbyusingtheSIMCA2Dalgorithmonlandminedataobtained fromGPRexperimentsconductedbyEuropeanresearchers. 83 3.7 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.8 GenerationofKernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 viii

Description:
soil conditions at the site (obtained using the realistic simulation of Maxwell's equations) and the .. 2.5 A manual demining situation using a metal detector. .. gorithm can render the steel-cased PROM-1 mine and even show the trip wire .
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.