SpringerSeriesin materials science 150 SpringerSeriesin materials science Editors: R.Hull C.Jagadish R.M.Osgood,Jr. J.Parisi Z.Wang The Springer Series in Materials Science covers the complete spectrum of materials physics, includingfundamentalprinciples,physicalproperties,materialstheoryanddesign.Recognizing theincreasingimportanceofmaterialsscienceinfuturedevicetechnologies,thebooktitlesinthis seriesreflectthestate-of-the-artinunderstandingandcontrollingthestructureandproperties ofallimportantclassesofmaterials. PleaseviewavailabletitlesinSpringerSeriesinMaterialsScience onserieshomepagehttp://www.springer.com/series/856 Amalia Patanè Naci Balkan Editors Semiconductor Research Experimental Techniques With 192 Figures 123 Editors AmaliaPatanè TheUniversityofNottingham,SchoolofPhysicsandAstronomy UniversityPark,NG72RDNottingham,UK E-mail:[email protected] NaciBalkan TheUniversityofEssex,SchoolofComputerScienceandElectronicEngineering Essex,UK E-mail:[email protected] SeriesEditors: ProfessorRobertHull ProfessorJu¨rgenParisi UniversityofVirginia Universita¨tOldenburg,FachbereichPhysik Dept.ofMaterialsScienceandEngineering Abt.Energie-undHalbleiterforschung ThorntonHall Carl-von-Ossietzky-Straße9–11 Charlottesville,VA22903-2442,USA 26129Oldenburg,Germany ProfessorChennupatiJagadish Dr.ZhimingWang AustralianNationalUniversity UniversityofArkansas ResearchSchoolofPhysicsandEngineering DepartmentofPhysics J4-22,CarverBuilding 835W.DicknsonSt. CanberraACT0200,Australia Fayetteville,AR72701,USA ProfessorR.M.Osgood,Jr. MicroelectronicsScienceLaboratory DepartmentofElectricalEngineering ColumbiaUniversity SeeleyW.MuddBuilding NewYork,NY10027,USA SpringerSeriesinMaterialsScience ISSN0933-033X ISBN978-3-642-23350-0 e-ISBN978-3-642-23351-7 DOI10.1007/978-3-642-23351-7 SpringerHeidelbergDordrechtLondonNewYork LibraryofCongressControlNumber: 2012935492 ©Springer-VerlagBerlinHeidelberg2012 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublicationor partsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9,1965,in itscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violationsareliableto prosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelawsand regulationsandthereforefreeforgeneraluse. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Thisbookintendstoprovideitsreaderswiththefundamentalsandapplicationsof experimentaltechniquescommonlyused in semiconductorresearch.Each chapter describesthephysicsconceptsunderlyingaspecifictechniqueanditslatestdevel- opmentsintheinvestigationofnovelsemiconductormaterialsandheterostructures, including InN, dilute nitride III-N-V alloys, InAs/GaSb heterostructuresand self- assembledquantumdots. Chapter 1 focuseson the investigationof semiconductorsurfaces by reflection high-energy electron diffraction (RHEED) and low-energy electron diffraction (LEED).Thesediffraction-basedtechniquesgiveaccesstothestructuralproperties ofcrystallinelayersandjunctions,whichrepresentthecoreofmoderndevices.Sev- eralexamplesofLEEDandRHEEDpatternsaredescribedandprovidethereader with the basic toolsforinterpretingRHEED andLEED data. Chapter2 describes transmissionelectronmicroscopy(TEM)and highresolutionelectronmicroscopy techniques.Thesearebasedontheanalysisofatransmittedelectronbeamthrough an electron-transparent sample. Operation principles of TEM and examples of spatialmappingofcompositionandstrainatthenanoscaleandatomicresolutionare thefocusofthischapter.Chapter3reviewscommontechniquesusedtoinvestigate theenergyandmomentumrelaxationratesofhotcarriersinsemiconductorswhere the carrier heating is achieved by either the application of an electrical field or by an opticalexcitation.This conditionis frequentlymetin opticalandelectronic device.Also, this chapterreviewssteady-state spectraland transientmeasurement techniques.Chapter4describestheprinciples,experimentalsetups,andtheoretical approachesusedinopticalmodulationspectroscopystudies.Particularattentionis dedicatedtocontactlesselectroreflectance(CER)andphotoreflectance(PR).These arenon-destructivetechniques,whicharewidelyappliedtostudythebandstructure propertiesof semiconductormaterials and devices. The complementarytechnique of photoluminescence (PL) and its relation to absorption and photoluminescence excitation(PLE)spectroscopyaredescribedinChap.5.Typicalexperimentalsetups for optical studies, with and without an applied magnetic field, are discussed and examples of their application to study electronic properties, disorder effects and carrier thermalization in III–V semiconductor alloys and heterostructures v vi Preface are provided. High pressure is one of the most valuable characterization tools available in semiconductor research. Chapter 6 describes how it can be used to investigate several important physical phenomena in semiconductor materials and devices such as the Gunn effect and avalanche breakdown. It also considers laser devices and the interesting changes that take place when a semiconductor material is subject to high pressures. Chapter 7 describes the principles and instrumentation of techniques used in spatially resolved spectroscopy, including micro-photoluminescence((cid:2)-PL),scanningnear-fieldopticalmicroscopy(SNOM), and spatially resolved cathodoluminescence (CL). Since the spatial resolution is often limited not only by instrumental capabilities but also by the spreading of the photoexcited carriers outside the photoexcited volume, the mechanisms of diffusion, photon recycling, phonon wind, and Fermi pressure are reviewed. The availability of ultrashort laser pulses has offered a new investigation tool to the opticalspectroscopyfield,givingaccessnotonlytothespectralfeaturesofluminous phenomena, but also directly to their dynamics. Chapter 8 presents an overview of the most popular ultra-fast time resolved optical spectroscopy techniques used in semiconductor physics in the picosecond and sub-picosecond time range. For eachofthesetechniques,whichincludetimeresolvedPL(TRPL),pumpandprobe time resolvedspectroscopy,and time-correlatedsingle photoncounting(TCSPC), theoperatingprinciplesandthefundamentalconceptsareintroducedtogetherwith typicalexperimentalsetupsandapplications.Thedevelopmentofanewgeneration of Raman spectroscopysystems in recentyears has contributedto the widespread of Raman spectroscopy in materials science. The aim of Chap. 9 is to offer an up-to-date overview of the fundamentals and use of Raman spectroscopy. The chapterisrestricted to standardspontaneousRaman spectroscopy.Itdiscussesthe basic concepts of inelastic light scattering and its application to study phonon and impurity modes, crystal quality, and strain effects in semiconductors. High magnetic fields have played a key role in elucidating the electronic properties of semiconductors.Thecyclotronresonance(CR)andtheHalleffectsareperhapsthe most celebratedexamplesof the use of magneticfields in semiconductorphysics. Cyclotron resonance is the focus of Chap. 10, which describes the basic theory of CR and discusses experimental setups and applications of CR to unravel the determination of the electron mass in various materials. Chapter 11 examines instead the physics of electron motion in the presence of a magnetic field, with particularreferencetorecentapplicationsinwhichhighmagneticfieldshavebeen used to elucidate the electronic and quantum properties of novel heterostructures andnanostructures.Also,itdescribeshowmagneto-tunnellingspectroscopy(MTS) can be used to measure the band structure of semiconductors and to investigate andmanipulatetheenergyeigenvaluesandeigenfunctionsofelectronsconfinedin low-dimensionalsystems.Finally,photoconductivity(PC),photo-inducedtransient spectroscopy(PITS),anddeepleveltransientspectroscopy(DLTS)arepresentedin Chap.12.These techniquesprovidepowerfultoolsto investigatethe intrinsic and extrinsic energy levels of a semiconductor, time constants associated with carrier recombination, activation energies, carrier capture cross-section and densities of energytraps. Preface vii Severalcolleagueshavecontributedtothisbookbykindlymakingavailabletheir expertiseandknowledge.Weareverygratefulfortheirhelpincompletingthisbook, whichwehopewillassiststudentsandresearchersintheirwork,thuscontributing tonovelandexcitingresearchinsemiconductorphysics. Nottingham,UK AmaliaPatane` Essex,UK NaciBalkan • Contents 1 SurfaceStudiesbyLow-EnergyElectronDiffraction andReflectionHigh-Energy-ElectronDiffraction...................... 1 P.Laukkanen,J.Sadowski,andM.Guina 1.1 BasicsofRHEEDandLEED........................................ 1 1.2 AnalysisofLEEDandRHEEDPatterns............................ 4 1.3 UsingLEEDtoStudyIII–VSurfaces............................... 8 1.3.1 Thec(8(cid:2)2)SurfacesofInAs(100) andInSb(100)............................................... 8 1.3.2 TheGaAs(100)Reconstructions........................... 9 1.3.3 TheBi-InducedReconstructions onIII–V(100)............................................... 11 1.4 UsingRHEEDtoStudyIII–Vs...................................... 12 1.4.1 OptimizingtheGrowthConditions ofGaAs/AlAsHeterostructures............................ 12 1.4.2 TheGaAs(100)Reconstructions........................... 13 1.4.3 TheGaAs(111)Reconstructions........................... 14 1.4.4 ProbingSurfaceReconstructions inGaInAsN(100)........................................... 15 1.4.5 In-SituCalibrationsofGrowthRate andCompositionofMultinaryCompounds............... 15 1.5 ConcludingRemarks................................................. 18 References.................................................................... 19 2 High-ResolutionElectronMicroscopyofSemiconductor HeterostructuresandNanostructures.................................... 23 DavidL.Sales,AnaM.Beltra´n,JuanG.Lozano, Jose´ M.Ma´nuel,M.PazGuerrero-Lebrero,TeresaBen, MiriamHerrera,FranciscoM. Morales,Joaqu´ınPizarro, AnaM.Sa´nchez,PedroL.Galindo,DavidGonza´lez,Rafael Garc´ıa,andSergioI.Molina 2.1 Introduction........................................................... 23 ix x Contents 2.1.1 TransmissionElectronMicroscopy, aPowerfulToolforSemiconductorResearch............. 24 2.2 CompositionalQuantificationColumn-To-Column inIII–VSemiconductors............................................. 27 2.2.1 ReferenceSamplesStudy .................................. 28 2.2.2 ImageAnalysisandComparativeIndex................... 29 2.2.3 SimulationofIntegratedIntensities........................ 31 2.3 StrainMeasurementsfromHigh-ResolutionElectron MicroscopyImages .................................................. 32 2.3.1 Techniques.................................................. 32 2.3.2 Methodology................................................ 33 2.3.3 Applications................................................. 36 2.4 ResultsonIII-SbHetero-andNanostructures...................... 36 2.5 ResultsonInAsQuantumWires .................................... 40 2.5.1 NucleationandInitialGrowthStages ofInAs/InP(001)QWRs ................................... 40 2.5.2 SimulatedandExperimentalDetermination ofStrainMapandPredictionofNucleation SitesfortheGrowthoftheStackedStructures............ 42 2.6 AnalysisoftheNDistributioninGaAsN........................... 44 2.7 ReviewonInNNanostructures...................................... 48 2.8 Crystalline, Compositional, and Strain TEM AssessmentsofHigh-QualityEpilayersofTernary andQuaternaryIII-NAlloys......................................... 51 2.8.1 PreviousConsiderations.................................... 52 2.8.2 Briefly,aComplete(S)TEMStudy........................ 53 2.8.3 AnalysesofLateralStrains................................. 56 References.................................................................... 58 3 HotElectronEnergyandMomentumRelaxation ...................... 63 NaciBalkan 3.1 Introduction........................................................... 63 3.2 HotElectronPhotoluminescenceintheSteadyState............... 65 3.3 MobilityMapping.................................................... 69 3.4 NonequilibriumPhonons(HotPhonons) ........................... 70 3.5 Cooling of Hot Electron Hole Plasma by LO Phonon Emission Using the CW and Transient PhotoluminescenceSpectroscopy................................... 73 3.5.1 OpticalHeatingintheSteadyStateUsingCW Photoluminescence......................................... 74 3.5.2 Time-ResolvedPLMeasurements......................... 75 3.6 HotElectronMomentumRelaxation................................ 78 3.6.1 ExperimentalTechniques .................................. 79 3.6.2 TheoreticalModelingofExperimentalResults........... 81