Applied and Numerical Harmonic Analysis SeriesEditor JohnJ.Benedetto UniversityofMaryland CollegePark,MD,USA EditorialAdvisoryBoard AkramAldroubi JelenaKovacˇevic´ VanderbiltUniversity CarnegieMellonUniversity Nashville,TN,USA Pittsburgh,PA,USA AndreaBertozzi GittaKutyniok UniversityofCalifornia UniversityofOsnabrück LosAngeles,CA,USA Osnabrück,Germany DouglasCochran MauroMaggioni ArizonaStateUniversity DukeUniversity Phoenix,AZ,USA Durham,NC,USA HansG.Feichtinger ZuoweiShen UniversityofVienna NationalUniversityofSingapore Vienna,Austria Singapore,Singapore ChristopherHeil ThomasStrohmer GeorgiaInstituteofTechnology UniversityofCalifornia Atlanta,GA,USA Davis,CA,USA StéphaneJaffard YangWang UniversityofParisXII MichiganStateUniversity Paris,France EastLansing,MI,USA David Joyner (cid:2) Jon-Lark Kim Selected Unsolved Problems in Coding Theory DavidJoyner Jon-LarkKim MathematicsDepartment DepartmentofMathematics USNavalAcademy UniversityofLouisville ChauvenetHall NaturalSciencesBuilding328 HollowayRoad572C Louisville,KY40292 Annapolis,Maryland21402 USA USA [email protected] [email protected] ISBN978-0-8176-8255-2 e-ISBN978-0-8176-8256-9 DOI10.1007/978-0-8176-8256-9 SpringerNewYorkDordrechtHeidelbergLondon LibraryofCongressControlNumber:2011935547 Mathematics Subject Classification (2010): 94-02, 94B05, 94B25, 94B27, 11T71, 14G50, 05B05, 05B15 ©SpringerScience+BusinessMedia,LLC2011 Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewritten permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY10013,USA),exceptforbriefexcerptsinconnectionwithreviewsorscholarlyanalysis.Usein connectionwithanyformofinformationstorageandretrieval,electronicadaptation,computersoftware, orbysimilarordissimilarmethodologynowknownorhereafterdevelopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarks,andsimilarterms,eveniftheyare notidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyaresubject toproprietaryrights. Printedonacid-freepaper www.birkhauser-science.com Preface Thisbookisintendedforresearchmathematiciansinterestedinunsolvedproblems, andgraduatestudentsinmathematicsorengineeringwhoareinterestedinthemath- ematical side of the theory of error-correcting codes. It also may be of interest to coding-theoristswhosimplywanttoknowhowtouseSAGEtodocertaincompu- tationswitherror-correctingcodes. Strongundergraduatesshouldfindmuchinthisbookofsomeinterestaswell.In termsofclassroomuse,thistextcouldserveasabasisforaspecialtopicscoursein thetheoryoferror-correctingcodes.Agoodbackgroundinalgebra,especiallylinear algebra, would be needed from the student. Some sections also require a strong backgroundinalgebraicgeometryandnumbertheory. Codingtheoryisthebranchofmathematicsconcernedwithreliablytransmitting dataacrossnoisychannels.Inmanycases,onecansimplysubdividethedatastream intoblocksofafixedlength k andthenencodeeachsuchblockwithsomeredun- dancytoa“codeword”oflongerlengthn,whichisthentransmitted.Withenough redundancy, the hope is that the receiver can recover the original k data bits. For example,inthelate1960stoearly1970sNASA’sMariner9tookpictures1ofMars suchasinFig.1.BlackandwhiteimagessuchasinFig.1weretransmittedthrough space back to Earth using the so-called Reed–Muller code of length n=32, with k=6databitsandn−k=26redundancybits. Inspiteofover60yearsofintensiveworkfromthebestmindsintheworld,there aremanyinterestingmathematicalquestionswhichremainunsolvedinthetheoryof error-correctingcodes.Themodestaimofthisbookwillprovidesome“publicity” forsomeofthosequestions. A chapter-by-chapter overview follows. We have tried to order the chapters by theroughlevelofmathematicalsophisticationrequiredfromthereader. Chapter 1 contains a brief discussion of some basic terms and results on error- correcting codes. For example, the binary symmetric channel, entropy and uncer- 1ThisimageofMars’OlympusMonswasfoundontheNASAwebsitehttp://marsprogram.jpl. nasa.gov/MPF/martianchronicle/martianchron2/index.htmlandisinthepublicdomain.Seealso http://en.wikipedia.org/wiki/Mariner_9. v vi Preface Fig.1 Mars’OlympusMons takenbyMariner9 tainty, Shannon’s theorem, the Hamming metric, the weight distribution (or spec- trum)ofacode,decodingbasics,boundsontheparametersofacode(suchasthe Singletonbound,Manin’stheorem,andtheGilbert–Varshamovasymptoticbound), and examples of important codes such as the Hamming codes and the quadratic residuecodes.SAGEexamplesarescatteredthroughouttoemphasizethecomputa- tionalaspect. Chapter2isaveryshortchaptersurveyingcertainaspectsofthebeautifultheory resultingin theintersectionbetweenself-dualcodes, lattices,andinvarianttheory. Thisisalargefieldwithseveralexcellentbooksandsurveyarticlesalreadywritten. We introduce weight enumerator polynomials (and the MacWilliams identity), di- visiblecodesandtheirclassification,invariantsassociatedtothedifferenttypesof self-dualcodesarisinginthisclassification,andlatticesarisingfromself-dualcodes. Thechapterendswithadiscussionofthefamousunsolved(atpresent)problemof theexistenceofaself-dual [72,36,16] binarycode.Again,someSAGEexamples aregiven.Afewproofsaresketched,butmostresultsarestatedwithonlyreferences tooriginalproofs. Chapter3discussessomefascinatingresultsintheintersectionbetweencoding theory, block designs, group theory, orthogonal arrays, Latin squares, and recre- ationalmathematics.AfterintroducingHadamardmatrices(andtheHadamardcon- jecture,withSAGEexamples),oneofthemostremarkableresultsinallofcoding theoryisdiscussed,theAssmus–Mattsontheorem.Roughlyspeaking,thistheorem shows a relationship between certain codes and the construction of certain block designs. Connections with Latin squares and orthogonal arrays are given. The un- expectedcombinatorialstructure“hidden”incertain“design-theoretic”codesisex- emplifiedbytheconstructionsinthesectioninvolvingaGolaycodeandthe“kitten” and“minimog”constructions.Thelastsectionsofthechapterdiscussrecreational aspectsofthetheory—strategiesforwinninga“mathematicalblackjack”card-game andhorsetrack-betting. Preface vii Chapter 4 explores an intriguing analogy between the Duursma zeta function (a recently introduced “invariant” object associated to a linear code) and the zeta functionattachedtoanalgebraiccurveoverafinitefield.Muchremainsunknown (atthistime)regardingtheDuursmazetafunction,butthischaptersurveysitsknown properties (mostly with proofs). Several SAGE examples are given; in fact, SAGE istheonlymathematicssoftwarepackage(atthistime)withcommandstocompute Duursmazetafunctions. Chapter5discussestwoveryhardandunsolvedproblems.Thefirstisanontrivial estimateforthenumberofsolutions(modp)toapolynomialequationy2=f(x), where f(x) is a polynomial whose degree is “small” compared to the prime p. (Whenpissmallcomparedtothedegreeoff,thenWeil’sestimategivesagoodes- timateofthenumberofsolutions.)Thesecondunsolvedproblemisthebestasymp- toticboundsforabinarylinearcode.Thesurpriseisthatthesetwoseeminglyunre- latedproblemsareinfact,rathercloselyrelated.Aspectsofthisrelationship,with someproofsandSAGEexamples,arediscussedindetail. Finally, Chap. 6 discusses some aspects of algebraic-geometric codes (or AG codes,forshort).Thesearecodesarisinggenerallyfromalgebraicvarietiesoverfi- nitefields,thoughthefocushereisonmodularcurves.Thisisarelativelytechnical chapter,requiringsomefamiliarityofnumbertheory,algebraicgeometry,andmod- ularformsandalsoofrepresentationtheoryoffinitegroups.Fittingwiththegeneral themeofthisbook,thischaptermostlyillustrateshowlittleweknowaboutthealge- braicstructureofAGcodesarisingfrommodularcurves.Aswithmanyotherareas ofmathematics,itseemsthatthemoreoneknows,themoreonediscovershowlittle isreallyknown. Acknowledgements DJ: I thank John Benedetto for the suggestion to write this bookandallhisencouragementovertheyears. JLK:IthankProfessorEmeritusVeraPlessofUniversityofIllinoisatChicago forteachingmetheinsightofcodingtheory.IalsothankmycoauthorDavidJoyner forhisencouragement. For Chap. 3, we thank Alex Ryba and Andy Buchanan for helpful comments, andAnnCasey,whocoauthored(withDJ)amuchearlierandshorterversion. ForChap.4,wearegratefultoThannWardforthereferenceto[Sl],KojiChinen formanyinterestingemailsabouthiswork,andtoCaryHuffmanandIwanDuursma forveryinterestingconversationsonthistopic. For Chap. 5, we thank Prof. Amin Shokrollahi of the Ecole Polytechnique FédéraledeLausanneforhelpfuladviceandProf.FelipeVolochoftheUniversity of Texas for allowing his construction to be included above. Parts of this (such as Proposition156)canbefoundinthehonorsthesis[C]ofDJ’sformerstudentGreg Coy,whowasapleasuretoworkwith. PartofChap.6waswrittenwithSalahoddinShokranianoftheUniversidadede Brasília (and Amin Shokrollahi’s uncle!). Other parts were adapted from a paper written with Amy Ksir (of the US Naval Academy). We also thank D. Prasad and R. Guralnick for enlightening correspondence and in particular for the references [KP]and[Ja1]. Contents 1 BackgroundonInformationTheoryandCodingTheory . . . . . . . 1 1.1 BinarySymmetricChannel . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 Shannon’sTheorem . . . . . . . . . . . . . . . . . . . . . 3 1.2 ASimpleExample . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 BasicDefinitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3.1 TheHammingMetric . . . . . . . . . . . . . . . . . . . . 9 1.4 LinearBlockCodes . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4.1 DecodingBasics . . . . . . . . . . . . . . . . . . . . . . . 12 1.4.2 HammingCodesoverGF(q) . . . . . . . . . . . . . . . . 14 1.5 BoundsontheParametersofaCode . . . . . . . . . . . . . . . . 16 1.5.1 Question:WhatIs“TheBest”Code? . . . . . . . . . . . . 18 1.5.2 TheFakeSingletonBound . . . . . . . . . . . . . . . . . 21 1.6 QuadraticResidueCodesandOtherGroupCodes . . . . . . . . . 22 1.6.1 AutomorphismGroups . . . . . . . . . . . . . . . . . . . 22 1.6.2 CyclicCodes . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.6.3 QuadraticResidueCodes . . . . . . . . . . . . . . . . . . 24 2 Self-dualCodes,Lattices,andInvariantTheory . . . . . . . . . . . . 29 2.1 WeightEnumerators . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2 DivisibleCodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3 SomeInvariants . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.4 CodesoverOtherFiniteRings . . . . . . . . . . . . . . . . . . . . 38 2.5 LatticesfromCodes . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.5.1 ConstructionsfromCodes . . . . . . . . . . . . . . . . . . 42 2.5.2 ThetaFunctionofaLattice . . . . . . . . . . . . . . . . . 43 2.6 MoreProblemsRelatedtoaPrizeProblem . . . . . . . . . . . . . 44 3 Kittens,MathematicalBlackjack,andCombinatorialCodes . . . . . 47 3.1 HadamardMatricesandCodes . . . . . . . . . . . . . . . . . . . 47 3.2 Designs,OrthogonalArrays,LatinSquares,andCodes. . . . . . . 51 3.2.1 ExamplesfromGolayCodes . . . . . . . . . . . . . . . . 53 ix x Contents 3.2.2 Assmus–MattsonTheorem . . . . . . . . . . . . . . . . . 53 3.2.3 OrthogonalArrays,LatinSquaresandCodes . . . . . . . . 56 3.3 Curtis’Kitten,Conway’sMinimog . . . . . . . . . . . . . . . . . 58 3.3.1 TheMINIMOGDescription . . . . . . . . . . . . . . . . . 61 3.3.2 ConstructionoftheExtendedTernaryGolayCode . . . . . 64 3.3.3 The“col/tet”Construction . . . . . . . . . . . . . . . . . . 65 3.3.4 TheKittenLabeling . . . . . . . . . . . . . . . . . . . . . 66 3.4 Playing“MathematicalBlackjack” . . . . . . . . . . . . . . . . . 67 3.5 PlayingtheHorses . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4 TheRiemannHypothesisandCodingTheory . . . . . . . . . . . . . 71 4.1 IntroductiontotheRiemannZetaFunction . . . . . . . . . . . . . 72 4.2 IntroductiontotheDuursmaZetaFunction . . . . . . . . . . . . . 73 4.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.3.1 VirtualWeightEnumerators . . . . . . . . . . . . . . . . . 74 4.4 TheZetaPolynomial . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.4.1 FirstDefinition . . . . . . . . . . . . . . . . . . . . . . . . 77 4.4.2 SecondDefinition . . . . . . . . . . . . . . . . . . . . . . 83 4.4.3 ThirdDefinition . . . . . . . . . . . . . . . . . . . . . . . 84 4.4.4 AnalogieswithCurves. . . . . . . . . . . . . . . . . . . . 86 4.5 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.5.1 TheFunctionalEquation. . . . . . . . . . . . . . . . . . . 89 4.5.2 PuncturingPreservesP . . . . . . . . . . . . . . . . . . . 91 4.5.3 TheRiemannHypothesis . . . . . . . . . . . . . . . . . . 91 4.6 Self-reciprocalPolynomials . . . . . . . . . . . . . . . . . . . . . 93 4.6.1 “Smoothness”ofRoots . . . . . . . . . . . . . . . . . . . 94 4.6.2 VariationsonaTheoremofEneström–Kakeya . . . . . . . 94 4.6.3 ALiteratureSurvey . . . . . . . . . . . . . . . . . . . . . 95 4.6.4 Duursma’sConjecture . . . . . . . . . . . . . . . . . . . . 103 4.6.5 AConjectureonZerosofCosineTransforms . . . . . . . . 104 4.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.7.1 Komichi’sExample . . . . . . . . . . . . . . . . . . . . . 106 4.7.2 TheExtremalCase. . . . . . . . . . . . . . . . . . . . . . 107 4.7.3 “RandomDivisibleCodes” . . . . . . . . . . . . . . . . . 110 4.7.4 AFormallySelf-dual[26,13,6] -code . . . . . . . . . . . 110 2 4.7.5 ExtremalCodesofShortLength . . . . . . . . . . . . . . 111 4.7.6 Non-self-dualExamples . . . . . . . . . . . . . . . . . . . 112 4.8 ChinenZetaFunctions . . . . . . . . . . . . . . . . . . . . . . . . 113 4.8.1 HammingCodes . . . . . . . . . . . . . . . . . . . . . . . 117 4.8.2 GolayCodes . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.8.3 Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . 118 5 HyperellipticCurvesandQuadraticResidueCodes . . . . . . . . . . 123 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 5.2 PointsonHyperellipticCurvesoverFiniteFields . . . . . . . . . . 124 5.3 Non-AbelianGroupCodes . . . . . . . . . . . . . . . . . . . . . 126