SEDIMENTARY MODELS FOR COAL FOru·ffiTION IN THE KLIP RIVER COALFIELD by Angus David Mackay Christie A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in the Departnent of Geology, University of Natal, Durban. Durban 1988 PREFACE This thesis represents original work by the author and has not been submitted in part, or in whole to any other university. Where use is made of the work of others it is acknowledged in the text. The research was conducted in the Department of Geology and Applied Geology, Universi ty of Natal, Durban, under the supervision of Professor R. Tavener-Smi th . IN MEMORY OF MY FATHER, DAVID ALEXANDER CHRISTIE ACKNOWLEDGEMENTS I wish to express my appreciation to the following individuals and organisations who contributed to the successful completion of this study: 1. National Geoscience Programme (NGP) for financing the project. 2. Professor R. Tavener-Smith, my supervisor and NGP Co-ordinator, for his assistance and constructive criticism. 3. The Chief Director, Geological Survey, for adopting this study as an official project and providing secretarial and drafting facilities. 4. Trans-Natal Coal Corporation, ISCOR, Arncoal, Rand Mines and Goldfields for providing access to confidential exploration borehole logs and reports. This study would not have been possible without the co-operation of these companies. 5. Trans-Natal Coal Corporation for providing accommodation at Northfield Colliery during the initial stages of this study. 6. Mr R.P. Randel, ISCOR and Dr H.U. Bantz, Trans-Natal Coal Corporation, for their willing assistance, advice and friendship throughout the duration of this project. 7. Dr T.R. Mason, University of Natal, Durban for his practical advice regarding systematic nomenclature of trace fossils, and the interest he showed in all aspects of the study. 8. My colleagues, Dave Roberts and Alan Smith, for helpful discussions and advice. 9. My parents-in-law for their support and assistance. 10. My wife Janet, and children Sarah and Matthew, for their love, support and understanding. ABSTRACT The primary objective of this study was to establish sedimentary models for peat formation in the southern part of the Klip River coalfield during Ecca (Permian) times and to assess palaeoenvironmental controls on coal seam behaviour and distribution. In order to achieve this approximately 2 400 borehole logs and 25 field sections were collected. The coal-bearing Vryheid Formation records early to late Permian fluvio-deltaic sedimentation within the northeastern main Karoo basin. Three informal lithostratigraphic subdivisions, based on the investigations of Blignaut and Furter (1940, 1952), are proposed: the Lower zone, Coal zone and Upper zone. An examination of the structural framework and history of the northeastern Karoo basin reveals that the southern and western boundaries of the Klip River coalfield are defined by zones of rapid basement subsidence the Tuge la and Oannhauser Troughs respectively. There is some doubt as to the locality of the source area to the rivers emptying into the Ecca sea. Ryan (1967) postulated the "Eastern Highlands" situated off the present southeast African coast, but it is contended that the Swaziland area, situated no more than 200 to 300 km to the northeast of the Klip River coalfield, constituted a more plausible source area. The Lower zone represents sedimentation along a westerly to southeasterly prograding coastline dominated by high-constructive lobate or braid deltas, but also showing significant influence by wave processes. The Coal zone, which varies in thickness from 35 to 60 m, represents a major phase of coastal progradation and braided-river deposition on extensive alluvial plains. Significant coal seams formed only during periods of fluvial inactivity, the duration of which was dependent on source-area processes. Coal seam geometry and behaviour in the Klip River coalfield were not influenced by the depositional environments of associated clastic sediments. The following factors were found to have of profound influence in determining the extent, distribution and rate of peat accumulation: 1. Platform stability and temporal and spatial variations therein. 2. The absence or presence of penecontemporaneous clastic sedimentation. 3. Ouration of periods of peat formation. 4. Lithology and topographic expression of clastic sediments underlying peat-forming swamps. The peat-forming phase of the Vryheid Formation was terminated by an extensive transgression brought about by an eustatic rise in basin water-level and/or an increased rate of platform subsidence. CONTENTS CHAPTER 1: INTRODUCTION ••••••.•••••••••.••••••••••.••••••••••.••• 1 1.1 GEOLOGICAL SETTING AND GEOGRAPHy...... . ............... 1 1.2 AIMS AND APPROACH •..•••••••••.•.•••••••••••••••••..•.• 5 CHAPTER 2: PREVIOUS INVESTIGATIONS ••••....••••.....•.••••.••.•••• 10 2.1 STRATIGRAPHIC AND SEDIMENTOLOGICAL INVESTIGATIONS ••••• 10 2.2 STRATIGRAPHIC SUBDIVISION OF THE VRYHEID FORMATION ...• 13 CHAPTER 3: TRACE FOSSILS ••••••••.••••••••••.••••••••••••••••••••• 17 3.1 INTRODUCTION ....••.•••••..••••......•••.••••••••••.••. 17 3.2 SYSTEMATIC ICHNOLOGy.................................. 18 Ichnogenus SIPHONICHNUS Stanistreet et al., 1980 ..•••• 18 Ichnospecies SIPHONICHNUS ECCAENSIS Stanistreet ••••••• et al., 1980 •......•••••••...•••••.•..••••••••.••••• 18 Ichnogenus SKOLITHOS Haldeman, 1840 20 Ichnogenus TIGILLITES Rouault, 1850 21 Ichnogenus DIPLOCRATERION Torell, 1870 •••••••••..•.••• 21 Ichnospecies DIPLOCRATERION POLYUPSILON Smith, 1893 ••• 21 Ichnogenus HELMINTHOPSIS Heer, 1877 •••••.••••.••.••••• 23 Ichnogenus NEREITES Macleay, 1839 •.••••••••••.•••••••. 23 Ichnogenus SCOLICIA de Quatrefages, 1849 •••••••..•.••• 26 Ichnogenus PLANOLITES Nicholson, 1873 •....•••••••..••• 26 Ichnogenus PALAEOPHYCUS Hall, 1847 ••••••.•••••••.•.••• 28 ................... Ichnogenus SPIRODESMOS Andree, 1920 29 3.3 ENVIRONMENTAL SIGNIFICANCE OF TRACE FOSSILS •..•••..••• 31 3.4 TRACE FOSSIL ASSOCIATIONS ••••.••••••..••.••••••••.•••• 38 .......................... 3.4.1 Siphonichnus (S) Association 38 3.4.2 Siphonichnus (F) Association .......................... 40 3.4.3 Spirodesmos Association ............................... 40 3.5 CONCLUSION ............................................ 41 CHAPTER 4: SEDIMENTARY FACIES .................................... 42 4.1 FACIES CONCEPT ... .. ................................... 42 4.2 FACIES DESCRIPTIONS AND INTERPRETATIONS •••••.••••••••• 44 4.2.1 The Conglomerate Facies (C) ••••••••••.•••••••..•••••.• 45 Facies Cm: Massive or crudely-bedded conglomerate ••••• 46 Facies Ci: Massive or crudely-bedded intraformational conglomerate .•••••••••••••••••••••••••••••• 46 4.2.2 The Sandstone Facies (S) ••••••..••••••••••••••••••••.• 46 Facies St: Trough cross-stratified sandstone 46 Facies Sp: Planar cross-stratified sandstone 49 Facies Sx: Cross-stratified sandstone ••••••.•••••••••• 51 Facies Sf: Flat stratified sandstone •••.•.•..•••••.•.• 51 Facies Sr: Ripple cross-laminated sandstone ••••••••••• 53 Facies Smr: Megarippled sandstone 54 Facies Sfl: Flaser-bedded sandstone ••••••••••••••••••• 54 Facies Sm: Massive sandstone ••..•••••••••.•••••••••••• 56 Facies Sb: Bioturbated sandstone •••••••.•••••••••••••• 57 4.2.3 The Fine-Grained Facies (F) •••••...•••••••.••••••••.•• 57 Facies Fm: Massive mudrock •••••••••••••••••••••••.•••• 58 Facies Ff and Fr: Laminated mudrock ••..••••••••..••••• 58 Facies Fb: Bioturbated mudrock •••••••••••••••••••••••• 59 4.2.4 The Heterolithic Facies ••••••••..••.•••••••.•••••••••• 59 Facies Fl: Lenticular-bedded sandstone and mudrock •••• 59 Facies AI: Alternating sandstone and mudrock ••••.•.••• 60 Facies W: Wavy-bedded sandstone and mudrock ••••••••••• 62 4.2.5 The Organochemical Facies ••...••••••.•..•••••.•••••••• 63 Facies C: Coal........................................ 63 4.2.6 Soft-Sediment Deformation ••••.••••••••••••••••••.••••• 64 Facies Sd and Fb: Penecontemporaneously deformed sandstone and mudrock •.••••••••••••••••••••• 64 CHAPTER 5: SEDIMENTARY MODELS •••••••••••••••••••••.•••••••••••••• 65 5.1 INTRODUCTION ••.•••••••••••.•••..•.••..•....••••••••••• 65 5.2 FLUVIAL FACIES ASSOCIATION ••••••••••••••••••••••••..•• 68 5.2.1 Channel Subassociation •••••••••••••••••...••••••••••.. 68 Description •••••••...•••••••••..••••••..•••••••••..••• 68 Discussion •.•••••••...•...•••.•••••••...•••••••.••.••• 73 5.2.2 Interchannel Subassociation •••..•••••••••••••••••••••• 76 Description ••••...•••••••••••••••....•••••••••••..•••• 76 Discussion 77 5.2.3 Depositional Model ••....••••• 78 5.3 DELTAIC FACIES ASSOCIATION 80 5.3.1 Prodelta Subassociation 80 Description •••••..•••••••••••••••••••••••.•••••••...•• 80 Discussion 82 5.3.2 Distal Distributary Mouth Bar Subassociation •••••••••• 83 Description ••••.••••••••••.••••••••••••••••••.•••••••. 83 Discussion 84 5.3.3 Proximal Distributary Mouth Bar Subassociation 91 Description 91 Discussion ...................................................................................... 92 5.3.4 The Delta Plain .............................................................................. 94 5.3.4.1 Distributary Channel Subassociation 94 Description ...................................................................................... 94 Discussion ........................................................................................ 97 5.3.4.2 Giant Cross-Bed Subassociation ................................................ 100 Description ...................................................................................... 100 Discussion ........................................................................................ 104 5.3.4.3 Embayment Subassociation ............................................................ 108 Description ...................................................................................... 108 Discussion ........................................................................................ 113 5.3.5 Model for Deltaic Deposition .................................................... 117 Vertical facies associations .................................................... 117 Thickness of deltaic sequences ................................................ 118 Distributary mouth processes .................................................... 119 The influence of waves .......................................................... 119 ............................................... Summary 120 5.4 WAVE-DOMINATED COASTLINES ••••••..••••••••.•••••••••••• 121 5.4.1 Delta-Associated Coastlines ...••••.••••••••••••••••••• 121 Description .•••••.•••••••••••••.•••••••••••••••••.•••• 121 Discussion •...•••••••..••••....•.••••••••••••••••..••• 126 5.4.2 Lateral-Accretion Coastlines •••.•••••••••••••••••••••• 133 Description ••...••.••••••.•••••••.•••.•.•....••••••••• 133 Discussion ••••••••••••••••••••••••••••.••••••••••.•••• 140 CHAPTER 6: STRUCTURAL FRAMEWORK AND PALAEOGEOGRAPHY OF THE NORTHEASTERN KAROO BASIN 148 6.1 STRUCTURAL ELEMENTS AND HISTORY OF THE KAROO BASIN •••• 148 6.2 CLIMATE ••••••••••••••••••••••••••.•••••••••.•••••••••• 156 6.3 PROVENANCE AND PALAEODRAINAGE ....•••••••••••••••••••.. 157 CHAPTER 7 : THE LOWER ZONE •••••••••••••••••••••••••••••••••••••••• 165 7.1 STRATIGRAPHY AND DEPOSITIONAL SETTING ..•.••••••••••••• 165 7.1.1 The Lower Component 165 ................................... 7.1.2 The Upper Component 171 7.2 CYCLICITY AND CONTROLS ON SEDIMENTATION ••••••••.•••••• 172 7.3 DEPOSITIONAL MODEL •••••••••••••••••••••••••••••••••••• 178 CHAPTER 8: PEAT-FORMING ENVIRONMENTS - PHYSICAL AND CHEMICAL CONSIDERATIONS •••••••••.•••••.••••••••••••••••••••••.• 179 8.1 INTRODUCTION •••••••••.•••••••••••••••••••••••••••••••• 179 8.2 TERMINOLOGY •.•.•••••••.•••••••.•..•••••••.•.•.••••.••• 179 8.3 THE INFLUENCE OF TECTONIC SETTING, BASEMENT RELIEF AND ...................................... SUBSIDENCE RATES 185 8.4 THE INFLUENCE OF CLIMATE AND FLORA ON COAL TYPE ••••••• 186 8.5 CHEMISTRY OF THE PEAT ENVIRONMENT •.••.•.•••••••••••••• 188 8.6 THE ORIGIN OF MINERAL MATTER IN COALS ••••••••••••••••••• 190 8.7 PEAT ACCUMULATION AND COMPACTION RATES •.•••••.•••••••••• 191 8.8 PEAT ACCUHULATION IN RELATION TO CLASTIC DEPOSITIONAL MODELS ••..•.••.....••••••••••••••••••••••••••....•••...• 191
Description: