ebook img

Securing IoT and Big Data: Next Generation Intelligence PDF

191 Pages·2021·4.415 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Securing IoT and Big Data: Next Generation Intelligence

Securing IoT and Big Data Internet of Everything (IoE): Security and Privacy Paradigm Series Editors: Vijender Kumar Solanki, Raghvendra Kumar, and Le Hoang Son Blockchain Technology Fundamentals, Applications, and Case Studies Edited by E Golden Julie, J. Jesu Vedha Nayahi, and Noor Zaman Jhanjhi Data Security in Internet of Things Based RFID and WSN Systems Applications Edited by Rohit Sharma, Rajendra Prasad Mahapatra, and Korhan Cengiz Securing IoT and Big Data Next Generation Intelligence Edited by Vijayalakshmi Saravanan, Anpalagan Alagan, T. Poongodi, and Firoz Khan Distributed Artificial Intelligence A Modern Approach Edited by Satya Prakash Yadav, Dharmendra Prasad Mahato, and Nguyen Thi Dieu Linh Security and Trust Issues in Internet of Things Blockchain to the Rescue Edited by Sudhir Kumar Sharma, Bharat Bhushan, and Bhuvan Unhelkar Internet of Medical Things Paradigm of Wearable Devices Edited by Manuel N. Cardona, Vijender Kumar Solanki, and Cecilia García Cena Integration of WSNs into Internet of Things A Security Perspective Edited by Sudhir Kumar Sharma, Bharat Bhushan, Raghvendra Kumar, Aditya Khamparia, and Narayan C. Debnath For more information about this series, please visit: https://www.crcpress.com/ Internet-of-Everything-IoE-Security-and-Privacy-Paradigm/book-series/CRCIOESPP Securing IoT and Big Data Next Generation Intelligence Edited by Vijayalakshmi Saravanan, Alagan Anpalagan, T. Poongodi, and Firoz Khan First edition published 2021 by CRC Press 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742 and by CRC Press 2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN © 2021 Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, LLC Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978- 750-8400. For works that are not available on CCC please contact [email protected] Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging-in-Publication Data Names: Saravanan, Vijayalakshmi, editor. | Anpalagan, Alagan, editor. | Poongodi, T., editor. | Khan, Firoz, editor. Title: Securing IoT and big data : next generation intelligence / edited by Vijayalakshmi Saravanan, Alagan Anpalagan, T. Poongodi, Firoz Khan. Description: First edition. | Boca Raton : CRC Press, 2021. | Includes bibliographical references and index. Identifiers: LCCN 2020028013 (print) | LCCN 2020028014 (ebook) | ISBN 9780367432881 (hardback) | ISBN 9781003009092 (ebook) Subjects: LCSH: Internet of things. | Big data. | Internet of things--Security measures. | Big data--Security measures. Classification: LCC TK5105.8857 .S385 2021 (print) | LCC TK5105.8857 (ebook) | DDC 004.67/8--dc23 LC record available at https://lccn.loc.gov/2020028013 LC ebook record available at https://lccn.loc.gov/2020028014 ISBN: 978-0-367-43288-1 (hbk) ISBN: 978-1-003-00909-2 (ebk) Typeset in Times by SPi Global, India Contents Preface .......................................................................................................................xi Acknowledgements .................................................................................................xiii Editors ......................................................................................................................xv Contributors ...........................................................................................................xvii Chapter 1 Foundation of Big Data and Internet of Things: Applications and Case Study ..............................................................1 1.1 Introduction to Big Data and Internet of Things.......................1 1.1.1 Big Data Management Systems in Healthcare .............3 1.1.2 Challenges in Healthcare ..............................................5 1.1.3 Sequencing Genomic Data ...........................................6 1.1.4 Deep Learning Applied to Genomic Data ....................8 1.1.5 Genomic Data and Modern Healthcare ......................10 1.2 Background and Rise of Internet of Things ............................11 1.2.1 IoT in Real-Time Healthcare Applications.................12 1.2.1.1 Wearable Front-End Device ........................12 1.2.1.2 Smartphone Application ..............................12 1.2.1.3 Cloud and Algorithms .................................12 1.2.1.4 How Does It Work in Real-Time? ...............12 1.3 Summary .................................................................................12 References .........................................................................................13 Chapter 2 Securing IoT with Blockchain: Challenges, Applications, and Techniques .................................................................................15 2.1 Introduction .............................................................................15 2.2 Security Issues of IoT .............................................................17 2.2.1 IoT Malware ...............................................................17 2.2.2 Device Updates Management ....................................17 2.2.3 Manufacturing Defects ...............................................18 2.2.4 Security of Massively Generated Data .......................18 2.2.5 Authorization and Authentication Issues ...................18 2.2.6 Botnet Attacks ............................................................19 2.3 Introduction to Blockchain .....................................................19 2.3.1 Public Blockchain ......................................................20 2.3.2 Private Blockchain .....................................................20 2.3.3 Consortium Blockchain .............................................20 2.4 Blockchain and IoT Integration: An Overview .......................21 v vi Contents 2.5 Applications of Integration .....................................................22 2.5.1 Smart Homes and Cities .............................................22 2.5.2 Healthcare ..................................................................22 2.5.3 Internet of Vehicles ....................................................23 2.5.4 Smart Manufacturing .................................................23 2.5.5 Supply Chain ..............................................................23 2.5.6 Smart Energy Grids ....................................................24 2.6 Existing Research on Blockchain-Based IoT Security ...........24 2.6.1 Lightweight IoT Nodes as Thin Clients .....................26 2.6.2 IoT Gateways as Blockchain Nodes ..........................28 2.6.3 IoT Nodes Integrated with Blockchain Clients ..........31 2.6.4 IoT Nodes as Regular Sensors ...................................32 2.7 Conclusion and Future Work ..................................................35 References .........................................................................................35 Chapter 3 IoT and Big Data Using Intelligence ................................................39 3.1 IoT in a Nutshell .....................................................................39 3.2 The Buzzword: Big Data in a Nutshell ...................................41 3.3 IoT vs Big Data .......................................................................44 3.4 Data Generation – Machine vs Human ...................................45 3.4.1 Machine-Generated Data ...........................................45 3.4.2 Human-Generated Data .............................................46 3.5 Data Stream, Management, and Progression Using IoT and Big Data Approach .........................................47 3.5.1 Data Streaming in IoT ................................................48 3.6 IoT and Big Data Working Together Using Intelligence ........51 3.7 Working Challenges ................................................................53 3.7.1 Component Convergence Challenges (CCC) .............54 3.7.2 Embedded Network Challenges (ENC) .....................55 3.7.3 Analytics and Application Challenges (AAC) ...........55 3.7.4 Ethical and Security Challenges (ESC) .....................55 3.7.5 IoT Adoption Challenges (IAC) .................................56 3.8 Conclusion ..............................................................................58 References .........................................................................................58 Chapter 4 Compulsion for Cyber Intelligence for Rail Analytics in IoRNT ...........................................................................................59 4.1 Introduction .............................................................................59 4.2 Computer-Based Intelligence .................................................60 4.2.1 Cyber Threat Intelligence...........................................61 4.2.2 Big Data and Analytics ..............................................62 4.3 Analytics Types: Descriptive, Prescriptive, and Predictive ....63 4.4 Understanding Predictive and Concise Analysis ....................64 Contents vii 4.4.1 Analytical Methods ....................................................64 4.4.2 Descriptive Analytics .................................................64 4.4.3 Predictive Analytics ...................................................65 4.4.4 Prescriptive Analytics ................................................66 4.5 Railway Networks ...................................................................67 4.5.1 Industry Pan Rail Directions ......................................68 4.5.1.1 Marketplace Size ........................................68 4.5.1.2 Investment/Evolution ..................................68 4.5.1.3 Government Initiatives ...............................69 4.5.1.4 Road Ahead ................................................69 4.6 Rail Analytics ..........................................................................70 4.7 Internet of Rail Network Things .............................................71 4.7.1 From Application Enabling Interface to IoT ..............72 4.7.2 Investing in Intelligence .............................................72 4.8 Big Data in Rail Intelligence Based on Cyber Threat ............75 4.8.1 An Effective Cyber Security Strategy for the Rail Sector.......................................................76 4.8.1.1 Dedicated Skills ..........................................76 4.9 Cyber Security Risk Management Strategic and Tactical Capabilities .........................................................78 4.10 Cyber-Attacks Affecting Railways .........................................78 4.11 Railway Cyber Security: Railway Operations and Assets Security ...................................................................................80 4.11.1 Cyber Security Railway Future Vulnerabilities .........80 4.11.2 Cyber Security in the Fight Against Railways ...........81 4.12 Conclusion ..............................................................................82 References .........................................................................................82 Chapter 5 Big Data and IoT Forensics ..............................................................85 5.1 Background and Introduction .................................................85 5.2 Types of IoT Forensics............................................................86 5.2.1 Cloud Forensics .........................................................87 5.2.2 Network Forensics .....................................................88 5.2.3 Device-Level Forensics ..............................................88 5.3 Sources and Nature of Data ....................................................89 5.3.1 Big Data .....................................................................90 5.3.2 IoT Forensics Data .....................................................91 5.4 Role of Big Data in IoT Forensics ..........................................93 5.4.1 Big Data Technologies ...............................................93 5.4.1.1 Hadoop .......................................................93 5.4.1.2 Spark ...........................................................93 5.4.1.3 Kafka ..........................................................94 5.4.2 Big Data Analytics .....................................................94 viii Contents 5.4.2.1 Data Stream Learning .................................95 5.4.2.2 Deep Learning ............................................95 5.4.2.3 Incremental and Ensemble Learning ..........96 5.4.2.4 Granular Computing-Based Machine Learning......................................................96 5.5 IoT Forensics Investigation Framework .................................97 5.5.1 Steps for IoT Forensics Investigation.........................97 5.5.1.1 Evidence Collection ...................................97 5.5.1.2 Examination ...............................................97 5.5.1.3 Analysis ......................................................97 5.5.1.4 Reporting ....................................................98 5.5.2 Forensic Soundness ....................................................98 5.5.2.1 Meaning ......................................................98 5.5.2.2 Errors ..........................................................98 5.5.2.3 Transparency and Trustworthiness .............98 5.5.2.4 Experience ..................................................98 5.6 Challenges in IoT Forensics ...................................................99 5.6.1 Variety of Data ...........................................................99 5.6.2 Security ......................................................................99 5.6.3 Privacy ........................................................................99 5.6.4 Data Organization ....................................................100 5.7 Case Studies Using IoT Forensics ........................................100 5.7.1 Smart Health Monitoring System ............................100 5.7.2 Amazon Echo as a Use Case ....................................101 5.7.3 IoT in a Smart Home ................................................101 5.8 Solution Methodology Proposed ..........................................101 5.8.1 Machine Learning Algorithms .................................101 5.8.2 Public Digital Ledger ...............................................102 5.9 Opportunities and Future Technologies ................................102 5.9.1 Forensic Data Dependability ....................................102 5.9.2 Models and Tools .....................................................102 5.9.3 Smart Analysis and Presentation ..............................102 5.9.4 Resolving Legal Challenges.....................................102 5.9.5 Smart Forensics for IoT ...........................................103 5.9.6 Emerging Technologies for IoT ...............................103 5.10 Conclusion ............................................................................103 References .......................................................................................104 Chapter 6 Integration of IoT and Big Data in the Field of Entertainment for Recommendation System ..........................................................109 6.1 Introduction ...........................................................................109 6.2 Background ...........................................................................110 6.3 Analysis and Algorithms .......................................................111 Contents ix 6.4 Case Study ............................................................................118 6.5 Discussion .............................................................................119 6.6 Conclusion ............................................................................120 References .......................................................................................120 Chapter 7 Secure and Privacy Preserving Data Mining and Aggregation in IoT Applications ..............................................123 7.1 Introduction ...........................................................................123 7.2 Privacy and Security Challenges in IoT Applications ..........124 7.2.1 Identification ............................................................124 7.2.2 Localizing and Tracking ..........................................124 7.2.3 Life Cycle Transitions ..............................................124 7.2.4 Secure Data Transmission ........................................125 7.3 Secure and Privacy Preserving Data Mining Techniques .....125 7.3.1 Privacy Preserving Techniques at Data Collection Layer .......................................................126 7.3.1.1 Additive Noise ..........................................126 7.3.1.2 Multiplicative Noise .................................126 7.3.2 Privacy Preserving at Data Publishing Layer ...........127 7.3.2.1 Generalization ..........................................127 7.3.2.2 Suppression ..............................................127 7.3.2.3 Anatomization ..........................................127 7.3.2.4 K-Anonymity ............................................127 7.3.2.5 L-Diversity ...............................................128 7.3.2.6 Personalized Privacy .................................128 7.3.2.7 Differential Privacy ..................................128 7.3.2.8 ∈-Differential Privacy ..............................129 7.3.3 Privacy Preserving at Data Mining Output Layer ....129 7.3.3.1 Association Rule Hiding ..........................130 7.3.3.2 Classifier Effectiveness Downgrading ......130 7.3.3.3 Query Auditing and Inference Control .....130 7.3.4 Distributed Privacy ...................................................130 7.3.4.1 One out of Two Oblivious Transfer ..........130 7.3.4.2 Homomorphic Encryption ........................131 7.4 Security Ensuring Techniques for Privacy Preserving Data Aggregation ................................................131 7.4.1 Privacy Preservation Using Homomorphic Encryption and Advanced Encryption Standard (AES) ........................................................133 7.4.1.1 Implementation of Homomorphic Encryption and AES Algorithm ................133 7.4.1.2 Encryption and Exchange .........................133 7.4.1.3 Decryption and Confusion........................134

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.