ebook img

Secondary Mathematics I: An Integrated Approach Module 3 Arithmetic and Geometric Sequences PDF

115 Pages·2015·13.34 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Secondary Mathematics I: An Integrated Approach Module 3 Arithmetic and Geometric Sequences

1 Secondary Mathematics I: An Integrated Approach Module 3 Arithmetic and Geometric Sequences By The Mathematics Vision Project: Scott Hendrickson, Joleigh Honey, Barbara Kuehl, Travis Lemon, Janet Sutorius www.mathematicsvisionproject.org In partnership with the Utah State Office of Education V © 2012 Mathematics Vision Project | M P In partnership with the Utah State Office of Education Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license. Sequences 1 Math 1: Intro to Arithmetic Sequences Name:_____________________________ Pd:_____ Congratulations, you have just won The Fillmore High School lottery! You are given the option of receiving your payments in one of two ways for the next 16 days: Would you rather Receive $20 a day for 16 days Or For the next 16 days, double 1 penny on Day 1 for a total of 2 pennies and receive 2 more pennies on Day 2, 4 more pennies on Day 3, 8 more on Day 4, etc.? 1.) Which payment would you choose? Why? 2.) How much money would each one give you after 5 days? $20 a day (start with 0) Pennies a day (start with 1) Day $ added Total $ Day $ added Total $ 1 20 20 1 .01 .02 2 20 40 2 .02 .04 3 20 60 3 .04 .08 4 20 80 4 .08 .16 5 5 3.) How much money after 10 days? 15 days? 4.) If the contest went for 16 days, which option would you choose? How much money would you make? Check the other option at 16 days. Did you make a good choice? Why? 5.) Plot your point (Days, $ Total) on the graph. DAYS 6) Look at the $20 a day, what is the amount changing by each day? (i.e., what is the slope?) 7) Look at the pennies a day, what happens to the amount each day? 8) Try to create an equation for the $20 a day. (hint: it is a line) 9) Try to create an equation for the pennies a day. (hint: it doubles each time, 2 * 2 * 2 * …* 2) 10) What would the difference in the total dollars between the two be after 20 days? Bonus: Each $20 dollar bill weighs .002 lbs. What would the weight be of your $20 dollar bills be after 15 days of receiving them? Each penny weighs .006 lbs. What would the weight be of your pennies after 15 days of receiving them? Homework Math 1: Introduction to Arithmetic and Geometric Sequence 3 e mit o c 3.1Growing Dots de s/f o A Develop Understanding Task hot p m/ o c kr. w.flic w w 2 1 20 © 1. Describe the pattern that you see in the sequence of figures above. 2. Assuming the sequence continues in the same way, how many dots are there at 3 minutes? 3. How many dots are there at 100 minutes? 4. How many dots are there at t minutes? Solve the problems by your preferred method. Your solution should indicate how many dots will be in the pattern at 3 minutes, 100 minutes, and t minutes. Be sure to show how your solution relates to the picture and how you arrived at your solution. V © 2012 Mathematics Vision Project | M P In partnership with the Utah State Office of Education Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license. Sequences 3 4 Name:     Sequences   3.1       Ready,  Set,  Go!     ©  2012    www.flickr.com/photos/fdecomite   Ready   Topic:  Exponents,  Substitution,  and  Function  Notation     Find  each  value.   1. 3!     2.    3!       3.    3!       4.  3!       For  each  of  the  following,  find  f  (1),  f  (2)  and  f  (3)   5.    𝑓 𝑥 =  2!         6.    𝑓 𝑥 = 3!       7.        𝑓 𝑥 = 2 𝑥−1 +3     Complete  each  table.   8.   Term   1st   2nd   3rd   4th   5th   6th   7th   8th   Value   2   4   8   16   32           9.   Term   1st   2nd   3rd   4th   5th   6th   7th   8th   Value   66   50   34   18             10.   Term   1st   2nd   3rd   4th   5th   6th   7th   8th   Value   -­‐3   9   -­‐27   81             11.   Term   1st   2nd   3rd   4th   5th   6th   7th   8th   Value   160   80   40   20             12.   Term   1st   2nd   3rd   4th   5th   6th   7th   8th   Value   -­‐9   -­‐2   5   12               V ©  2012  Mathematics  Vision  Project  |  M P   In  partnership  with  the  Utah  State  Office  of  Education         Licensed  under  the  Creative  Commons  Attribution-­‐NonCommercial-­‐ShareAlike  3.0  Unported  license       Sequences 4 5 Name:     Sequences   3.1     Set   Topic:  Completing  a  table   Fill  in  the  table.    Then  write  a  sentence  explaining  how  you  figured  out  the  values  to  put  in   each  cell.  Explain  how  to  figure  out  what  will  be  in  cell  #8.   13. You  run  a  business  making  birdhouses.  You  spend  $600  to  start  your  business,  and  it  costs   you  $5.00  to  make  each  birdhouse.       #  of  birdhouses   1   2   3   4   5   6   7   Total  cost  to  build                   Explanation:     14. You  borrow  $500  from  a  relative,  and  you  agree  to  pay  back  the  debt  at  a  rate  of  $15  per   month.       #  of  months   1   2   3   4   5   6   7   Amount  of  money  owed                   Explanation:       15. You  earn  $10  per  week.     #  of  weeks   1   2   3   4   5   6   7   Amount  of  money  earned                   Explanation:       16. You  are  saving  for  a  bike  and  can  save  $10  per  week.  You  have  $25  already  saved.     #  of  weeks   1   2   3   4   5   6   7   Amount  of  money  saved                   Explanation:   V ©  2012  Mathematics  Vision  Project  |  M P   In  partnership  with  the  Utah  State  Office  of  Education         Licensed  under  the  Creative  Commons  Attribution-­‐NonCommercial-­‐ShareAlike  3.0  Unported  license       Sequences 5 6 Name:     Sequences   3.1     Go   Topic:  Good  viewing  window   1 When  sketching  a  graph  of  a   Example:        g  (x)  =   x  –  6   function,  it  is  important  that   3 we  see  important  points.  For   Window:    [  -­‐10,  10]  by  [  -­‐10,10]   Window:  [-­‐10,  25]    by    [  -­‐10,  5]   linear  functions,  we  want  a   x-­‐  scale:  1          y-­‐scale:  1   x-­‐scale:  5   y-­‐scale:  5   window   that   shows   important   information   related   to   the   story.   Often,   this   means   including   both       the  x-­‐  and  y-­‐  intercepts.     Good  window   NOT  a  good  window     1 17.    f(x)  =  -­‐    x  +  1           18.    7  x  –  3  y  =  14   10 x:  [          ,          ]  by    y:  [          ,          ]         x:  [          ,          ]  by    y:  [          ,          ]     x-­‐scale:             y-­‐scale:           x-­‐scale:             y-­‐scale:               19.    y  =  3(x  –  5)  +12           20.    f  (x)  =  -­‐15  (x  +  10)  –  45   x:  [          ,          ]  by    y:  [          ,          ]         x:  [          ,          ]  by    y:  [          ,          ]     x-­‐scale:             y-­‐scale:           x-­‐scale:             y-­‐scale:               V ©  2012  Mathematics  Vision  Project  |  M P   In  partnership  with  the  Utah  State  Office  of  Education         Licensed  under  the  Creative  Commons  Attribution-­‐NonCommercial-­‐ShareAlike  3.0  Unported  license       Sequences 6

Description:
Homework Math 1: Introduction to Arithmetic and Geometric Sequence . A Solidify Understanding Task. Scott has decided to add push-ups to his
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.