Search for Single Top tW Associated Production in the Dilepton Channel at CMS JochenOttonbehalfoftheCMSCollaboration KarlsruheInstituteofTechnology Abstract. We present a first study of the single top quark W-associated production (tW) in proton-proton collisionsattheLHCatacentre-of-massenergyof7TeV,usingdatacollectedwiththeCMSexperiment.The 2 searchisperformedinthedileptonicfinalstatesee/eµ/µµwithaselectionbasedonkinematicalpropertiesand 1 b-tagginginformation.ThecontributionoftheZ+jetsprocessestothebackgroundisestimatedfromasideband 0 indata.Twot¯tdominatedcontrolregionsareusedtoconstrainthenormalizationoftopquarkpairproductionin 2 thesignalregion.Anexcessofeventsovertheexpectedbackgroundisobserved.Assigningthisexcesstoevents n fromtWproduction,theextractedtWcrosssectionisinagreementwiththeStandardModelexpectation. a J 4 1 Single Top tW Production ThisanalysisconsiderstWdileptoneventsinwhichthe 2 final state W boson and the W boson from the top quark Single top quark associated production (tW) is character- decay both decay into a charged lepton (e/µ) and a neu- ] x izedbyafinalstatewithatopquarkandaWboson.Acon- trino.Theeventsignatureconsistsof2oppositelycharged e tributingleading-orderFeynmandiagramisshowninFig. leptons,missingtransverseenergyfromtheneutrinos,and - 1 (a). At next-to-leading order, real contributions with an oneb-jetfromthetopquarkdecay. p additional bottom quark in the final state lead to ambigu- e h itiesintheconceptualdistinctionbetweenthetWprocess Events are selected online by a corresponding dilep- [ andtopquarkpairproduction,asshowninFig.1(b).Two ton trigger (ee/eµ/µµ). In the offline analysis, events are possibilitiestoresolvethisambiguity[1]havebeenconsid- required to have exactly two isolated, oppositely charged 1 ered:inthediagramremovalmethod,alldiagramswhich leptons with pT > 20 GeV and |η| < 2.4 (2.5) for muons v can also arise in top quark pair production are removed (electrons).ToreducethenumberofselectedZ+jetevents 7 for the calculation. This is used as default scheme for the in the ee and µµ channels, events with invariant dilepton 9 9 simulationusedinthisanalysis.Thesecondpossibilityis massm(cid:96)(cid:96)between81and101GeVarerejected.Tofurther 4 the diagram subtraction method which locally subtracts reduceeventswithnopromptneutrinos(Z+jets,QCD),a . resonant contributions. The difference between these two cutonmissingtransverseenergy,Emiss >30GeVisplaced 1 T methodsisconsideredasasystematicuncertainty. intheeeandµµchannels. 0 2 ThepredictedStandardModelcrosssectionevaluated As tW signal has a b-quark in its final state, signal 1 atapproximateNNLOis15.6±1.2pb[2]. eventsareexpectedtohaveexactlyoneb-taggedjetwhile : v forthedominatingbackgroundprocess,topquarkpairpro- i duction,twob-taggedjetsareexpected.Tosimultaneously X 2 Event Selection extractsignalandconstrainthetopquarkpairbackground, r a Thepresentanalysisusesadatasetofproton-protoncolli- three event categories are defined based on jet and b-tag √ sions at s = 7 TeV which corresponds to an integrated multiplicity:the“1jet1tag”categorycontainseventswith exactlyonejetwith p > 30GeVand|η| < 2.4whichhas luminosityof2.1fb−1,recordedwiththeCMSdetector[3]. T been identified by a b-tagging algorithm based on the re- constructionofasecondaryvertex[7].Similary,the“2jet 1tag” and “2jet 2tag” categories contain events with ex- actly 2 jets and where either one or both of them are b- tagged. MostofthetWsignalisinthe1jet1tagcategory.Inthis selection, the dominating background are top quark pair eventsinthedileptonchannelinwhichoneofthetwoex- pectedjetsisoutsidethekinematicacceptance.Thisleads toamomentumimbalanceinthevariablePsystem whichis (a) (b) T definedasthethevector-sumoftransversemomentaofthe Fig. 1. (a) Leading order Feynman diagram for tW production. leptons, missing transverse energy, and the jet: while for (b) Next-to-leading order Feynman diagram for tW production tW,thisisthetransversemomentumofthecompletefinal whichalsoappearsasaleadingorderdiagramfortopquarkpair statewhichisexpectedtobesmall,itisexpectedtohave production(andpartialdecay). largervaluesfort¯tduetothemissingjet.ThePsystem vari- T EPJWebofConferences TodeterminetheremainingnumberofDrell-Yanback- 250 CMS Preliminary, s = 7 TeV data groundevents,atechniquebasedonadatasidebandisused 2.1 fb-1, ee/em /m m tW tt whichusesthenumberofeventsintheZbosonmasspeak, 200 Z/g *+jets Nobs ,definedasthenumberofeventsinthem cutregion Other (cid:96)(cid:96),in (cid:96)(cid:96) -1b from 81 to 101 GeV. From this number, the non-resonant 1 f150 contributionfromprocesseswithtwofinalstateWbosons 2. s / (such as t¯t, tW, WW), is subtracted which is estimated in vent100 theeµchannel.Finally,thepredictedratioofeventsinside e andoutsidethevetoregionisusedtoestimatetheremain- ingnumberofDrell-Yaneventspassingtheselection: 50 NMC 1 NDY = (cid:96)(cid:96),out ·(Nobs − kN ) 0 100 200 300 400 500 600 est Nobs (cid:96)(cid:96),in 2 eµ H [GeV] (cid:96)(cid:96),in T wherek correctsfordifferencesine/µreconstructioneffi- (a) ciencyandthefactor 1 accountsfortheratioofbranching 2 ratiosofsame-flavortodifferent-flavorleptonchannelsin 250 CMS Preliminary, s = 7 TeV data dileptontWandtopquarkpairevents,BR((cid:96)(cid:96))/BR(eµ). 2.1 fb-1, ee/em /m m tW tt Z/g *+jets 200 Other 4 Systematic Uncertainties -1b 1 f150 Anumberofdifferentsourcesofuncertaintyaffecttheex- 2. s / pectedbackgroundandsignalyield.Theconsidereduncer- nt ve100 taintiesare e – Pileupmodeling:additionalproton-protoninteractions 50 inthesamebunchcrossing(pileup)shiftleptonisola- tionandjetenergies.Apossiblyimperfectmodelingof pileupintroducesthisuncertaintywhichturnsouttobe 0 20 40 60 80 100 120 140 160 180 200 below1%forallyields. P system [GeV] T – Trigger efficiency: the efficiency of the online selec- (b) tionisknownto1.5%. – Leptonreconstructionandidentificationefficiency: Fig.2.Variablesusedintheeventselectionforeventswithone theefficienciesareknownto1%(2%)formuons(elec- b-taggedjet:(a)Psystem,definedasthetransversemomentumsum T trons). ofjets,leptonsandmissingtransverseenergyforeventswithex- – Emissmodeling: to account for the uncertainty of ca- actly. (b) HT, defined as the scalar sum of the leptons, jets and T lorimeter response of energy not included in jets and missingtransverseenergy. leptons,thisenergyissmearedby10%whichchanges thesignalacceptanceby1–2%. ableisshowninFig.2(a).Eventswith Psystem < 60GeV – Jet energy scale and resolution: the absolute jet en- T ergycalibrationisknowntoabout2–3%[5],thejeten- areselectedforfurtheranalysis. In the eµ channel, where no invariant mass and Emiss ergyresolutiontoabout10%[6].Varyingjetenergies T according to these uncertainties yields to acceptance requirements are applied, H (Fig. 2 (b)), defined as the T differencesofabout1–2%fortWsignaland4–6%for scalarsumofthetransversemomentaoftheleptons,jets, andEmiss,isrequiredtobelargerthan160GeV. t¯tbackground. T – Background normalization: the estimate for Drell- After this selection, the dominating background pro- Yan background events is assigned an uncertainty of cess is top quark pair production. In the same-flavor lep- 50%, for other backgrounds, the cross section uncer- tonchannelseeandµµ,thereisanon-negligiblecontribu- taintiesfromtheoryareused. tion from Drell-Yan events. Other background processes include W+jets with a fake lepton and diboson processes – tW and t¯t modeling: a number of parameters in the (WW/WZ/ZZ). simulation, such as the factorization and renormaliza- tion scale, matrix-element / parton shower matching parameters,partondistributionfunctions,diagramsub- tractionandremovalmethods,havebeenvariedinthe 3 Background Estimation simulationoftWsignalandt¯t. – Luminosity:thecalibrationoftheabsoluteintegrated luminosityis4.5%. The background contributions from W+jets and diboson – B-tagging:theefficiencyoftheb-taggingalgorithmto processes are expected to be very small and taken from correctlytagab-jetisknowntoabout10%.[7] simulation. Toestimatethebackgroundcontributionfromtopquark pair production, simulated events are used, scaled to the 5 Statistical Analysis approximateNNLOcrosssectioncalculationfrom[4].The topquarkpaircrosssectionisallowedtovaryinthestatis- To extract the cross section and significance, a Poisson ticalevaluationwithinthesystematicuncertainties. countingmodelisusedin9channels:3leptonfinalstates HadronColliderPhysicsSymposium2011 (ee/eµ/µµ), each with 3 jet / b-tag multiplicities shown in 700 Fig. 3. The likelihood function is the product of Poisson C2.M1 Sfb P-1,r eelmim cihnaanrny,e l s = 7 TeV dtWata probabilitiesoverall9channels: 600 tt Z/g*+jets 500 Other L(p|n)=(cid:89)9 µniieµi -11 fb400 i=1 ni! s / 2. nt300 e v where n is the number of observed events in channel i e i 200 and µ is the predicted event yield which depends on the i modelparametersp.Systematicuncertaintiesareincluded 100 asnuisanceparametersaslog-normaluncertaintieswhich change the predicted yield µi correlated across all chan- 1 jet 1 tag 2 jet 1 tag 2 jet 2 tag nels. Thecrosssectionisextractedusingaprofilelikelihood (a) technique.Thesignificanceisevaluatedusingthedistribu- tionofaprofilelikelihoodratioteststatisticfortoyexperi- mentsincludingnosignal.Fortoygeneration,thenuisance 350 C2.M1 Sfb P-1,r memlim chinaanrny,e l s = 7 TeV dtWata parametersaredrawnrandomlyaccordingtotheirpriors. tt 300 Z/g*+jets Other -1b250 6 Result 2.1 f200 s / nt e150 TheextractedsingletoptWcrosssectionis ev 100 σ =22+9pb tW −7 50 which is consistent with the Standard Model prediction. 1 jet 1 tag 2 jet 1 tag 2 jet 2 tag The uncertainty includes the statistical and all systematic uncertaintiesdiscussedinSection4. (b) The probability that the observed excess of events is merelyanupwardfluctuationofbackgroundwithavanish- ingtWcrosssectioncorrespondsto2.7σ,theexpectedsig- 200 CMS Preliminary, s = 7 TeV data nificancefortheStandardModelcrosssectionis1.8±0.9σ. 2.1 fb-1, ee channel tW 180 tt Moredetailsaboutthisanalysiscanbefoundin[8]. Z/g*+jets 160 Other -1b140 2.1 f120 References s / 100 nt ve 80 e 1. Frixione, Laenen, Motylinski et al., JHEP 07 (2008) 60 029 40 2. Kidonakis,Phys.Rev.D82(2010)054018 20 3. TheCMSCollaboration,JINST0803(2008)08004 1 jet 1 tag 2 jet 1 tag 2 jet 2 tag 4. Kidonakis,Phys.Rev.D82(2010)114030 5. The CMS Collaboration, Physics Analysis Summary (c) JME-10-010(2010) 6. The CMS Collaboration, Physics Analysis Summary JME-10-014(2010) 1200 CMS Preliminary, s = 7 TeV data 7. The CMS Collaboration, Physics Analysis Summary 2.1 fb-1, ee/em /m m tW tt BTV-10-001(2010) 1000 Z/g*+jets 8. The CMS Collaboration, Physics Analysis Summary Other TOP-11-022(2011) -11 fb800 2. s / 600 nt e v e 400 200 1 jet 1 tag 2 jet 1 tag 2 jet 2 tag (d) Fig.3.Obervedandpredictednumberofeventsinallleptonand jet/b-taggingcategories.Thepredictionisevaluatedatthemax- imumofthelikelihoodfunction.