ebook img

Search for Single Top tW Associated Production in the Dilepton Channel at CMS PDF

0.19 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Search for Single Top tW Associated Production in the Dilepton Channel at CMS

Search for Single Top tW Associated Production in the Dilepton Channel at CMS JochenOttonbehalfoftheCMSCollaboration KarlsruheInstituteofTechnology Abstract. We present a first study of the single top quark W-associated production (tW) in proton-proton collisionsattheLHCatacentre-of-massenergyof7TeV,usingdatacollectedwiththeCMSexperiment.The 2 searchisperformedinthedileptonicfinalstatesee/eµ/µµwithaselectionbasedonkinematicalpropertiesand 1 b-tagginginformation.ThecontributionoftheZ+jetsprocessestothebackgroundisestimatedfromasideband 0 indata.Twot¯tdominatedcontrolregionsareusedtoconstrainthenormalizationoftopquarkpairproductionin 2 thesignalregion.Anexcessofeventsovertheexpectedbackgroundisobserved.Assigningthisexcesstoevents n fromtWproduction,theextractedtWcrosssectionisinagreementwiththeStandardModelexpectation. a J 4 1 Single Top tW Production ThisanalysisconsiderstWdileptoneventsinwhichthe 2 final state W boson and the W boson from the top quark Single top quark associated production (tW) is character- decay both decay into a charged lepton (e/µ) and a neu- ] x izedbyafinalstatewithatopquarkandaWboson.Acon- trino.Theeventsignatureconsistsof2oppositelycharged e tributingleading-orderFeynmandiagramisshowninFig. leptons,missingtransverseenergyfromtheneutrinos,and - 1 (a). At next-to-leading order, real contributions with an oneb-jetfromthetopquarkdecay. p additional bottom quark in the final state lead to ambigu- e h itiesintheconceptualdistinctionbetweenthetWprocess Events are selected online by a corresponding dilep- [ andtopquarkpairproduction,asshowninFig.1(b).Two ton trigger (ee/eµ/µµ). In the offline analysis, events are possibilitiestoresolvethisambiguity[1]havebeenconsid- required to have exactly two isolated, oppositely charged 1 ered:inthediagramremovalmethod,alldiagramswhich leptons with pT > 20 GeV and |η| < 2.4 (2.5) for muons v can also arise in top quark pair production are removed (electrons).ToreducethenumberofselectedZ+jetevents 7 for the calculation. This is used as default scheme for the in the ee and µµ channels, events with invariant dilepton 9 9 simulationusedinthisanalysis.Thesecondpossibilityis massm(cid:96)(cid:96)between81and101GeVarerejected.Tofurther 4 the diagram subtraction method which locally subtracts reduceeventswithnopromptneutrinos(Z+jets,QCD),a . resonant contributions. The difference between these two cutonmissingtransverseenergy,Emiss >30GeVisplaced 1 T methodsisconsideredasasystematicuncertainty. intheeeandµµchannels. 0 2 ThepredictedStandardModelcrosssectionevaluated As tW signal has a b-quark in its final state, signal 1 atapproximateNNLOis15.6±1.2pb[2]. eventsareexpectedtohaveexactlyoneb-taggedjetwhile : v forthedominatingbackgroundprocess,topquarkpairpro- i duction,twob-taggedjetsareexpected.Tosimultaneously X 2 Event Selection extractsignalandconstrainthetopquarkpairbackground, r a Thepresentanalysisusesadatasetofproton-protoncolli- three event categories are defined based on jet and b-tag √ sions at s = 7 TeV which corresponds to an integrated multiplicity:the“1jet1tag”categorycontainseventswith exactlyonejetwith p > 30GeVand|η| < 2.4whichhas luminosityof2.1fb−1,recordedwiththeCMSdetector[3]. T been identified by a b-tagging algorithm based on the re- constructionofasecondaryvertex[7].Similary,the“2jet 1tag” and “2jet 2tag” categories contain events with ex- actly 2 jets and where either one or both of them are b- tagged. MostofthetWsignalisinthe1jet1tagcategory.Inthis selection, the dominating background are top quark pair eventsinthedileptonchannelinwhichoneofthetwoex- pectedjetsisoutsidethekinematicacceptance.Thisleads toamomentumimbalanceinthevariablePsystem whichis (a) (b) T definedasthethevector-sumoftransversemomentaofthe Fig. 1. (a) Leading order Feynman diagram for tW production. leptons, missing transverse energy, and the jet: while for (b) Next-to-leading order Feynman diagram for tW production tW,thisisthetransversemomentumofthecompletefinal whichalsoappearsasaleadingorderdiagramfortopquarkpair statewhichisexpectedtobesmall,itisexpectedtohave production(andpartialdecay). largervaluesfort¯tduetothemissingjet.ThePsystem vari- T EPJWebofConferences TodeterminetheremainingnumberofDrell-Yanback- 250 CMS Preliminary, s = 7 TeV data groundevents,atechniquebasedonadatasidebandisused 2.1 fb-1, ee/em /m m tW tt whichusesthenumberofeventsintheZbosonmasspeak, 200 Z/g *+jets Nobs ,definedasthenumberofeventsinthem cutregion Other (cid:96)(cid:96),in (cid:96)(cid:96) -1b from 81 to 101 GeV. From this number, the non-resonant 1 f150 contributionfromprocesseswithtwofinalstateWbosons 2. s / (such as t¯t, tW, WW), is subtracted which is estimated in vent100 theeµchannel.Finally,thepredictedratioofeventsinside e andoutsidethevetoregionisusedtoestimatetheremain- ingnumberofDrell-Yaneventspassingtheselection: 50 NMC 1 NDY = (cid:96)(cid:96),out ·(Nobs − kN ) 0 100 200 300 400 500 600 est Nobs (cid:96)(cid:96),in 2 eµ H [GeV] (cid:96)(cid:96),in T wherek correctsfordifferencesine/µreconstructioneffi- (a) ciencyandthefactor 1 accountsfortheratioofbranching 2 ratiosofsame-flavortodifferent-flavorleptonchannelsin 250 CMS Preliminary, s = 7 TeV data dileptontWandtopquarkpairevents,BR((cid:96)(cid:96))/BR(eµ). 2.1 fb-1, ee/em /m m tW tt Z/g *+jets 200 Other 4 Systematic Uncertainties -1b 1 f150 Anumberofdifferentsourcesofuncertaintyaffecttheex- 2. s / pectedbackgroundandsignalyield.Theconsidereduncer- nt ve100 taintiesare e – Pileupmodeling:additionalproton-protoninteractions 50 inthesamebunchcrossing(pileup)shiftleptonisola- tionandjetenergies.Apossiblyimperfectmodelingof pileupintroducesthisuncertaintywhichturnsouttobe 0 20 40 60 80 100 120 140 160 180 200 below1%forallyields. P system [GeV] T – Trigger efficiency: the efficiency of the online selec- (b) tionisknownto1.5%. – Leptonreconstructionandidentificationefficiency: Fig.2.Variablesusedintheeventselectionforeventswithone theefficienciesareknownto1%(2%)formuons(elec- b-taggedjet:(a)Psystem,definedasthetransversemomentumsum T trons). ofjets,leptonsandmissingtransverseenergyforeventswithex- – Emissmodeling: to account for the uncertainty of ca- actly. (b) HT, defined as the scalar sum of the leptons, jets and T lorimeter response of energy not included in jets and missingtransverseenergy. leptons,thisenergyissmearedby10%whichchanges thesignalacceptanceby1–2%. ableisshowninFig.2(a).Eventswith Psystem < 60GeV – Jet energy scale and resolution: the absolute jet en- T ergycalibrationisknowntoabout2–3%[5],thejeten- areselectedforfurtheranalysis. In the eµ channel, where no invariant mass and Emiss ergyresolutiontoabout10%[6].Varyingjetenergies T according to these uncertainties yields to acceptance requirements are applied, H (Fig. 2 (b)), defined as the T differencesofabout1–2%fortWsignaland4–6%for scalarsumofthetransversemomentaoftheleptons,jets, andEmiss,isrequiredtobelargerthan160GeV. t¯tbackground. T – Background normalization: the estimate for Drell- After this selection, the dominating background pro- Yan background events is assigned an uncertainty of cess is top quark pair production. In the same-flavor lep- 50%, for other backgrounds, the cross section uncer- tonchannelseeandµµ,thereisanon-negligiblecontribu- taintiesfromtheoryareused. tion from Drell-Yan events. Other background processes include W+jets with a fake lepton and diboson processes – tW and t¯t modeling: a number of parameters in the (WW/WZ/ZZ). simulation, such as the factorization and renormaliza- tion scale, matrix-element / parton shower matching parameters,partondistributionfunctions,diagramsub- tractionandremovalmethods,havebeenvariedinthe 3 Background Estimation simulationoftWsignalandt¯t. – Luminosity:thecalibrationoftheabsoluteintegrated luminosityis4.5%. The background contributions from W+jets and diboson – B-tagging:theefficiencyoftheb-taggingalgorithmto processes are expected to be very small and taken from correctlytagab-jetisknowntoabout10%.[7] simulation. Toestimatethebackgroundcontributionfromtopquark pair production, simulated events are used, scaled to the 5 Statistical Analysis approximateNNLOcrosssectioncalculationfrom[4].The topquarkpaircrosssectionisallowedtovaryinthestatis- To extract the cross section and significance, a Poisson ticalevaluationwithinthesystematicuncertainties. countingmodelisusedin9channels:3leptonfinalstates HadronColliderPhysicsSymposium2011 (ee/eµ/µµ), each with 3 jet / b-tag multiplicities shown in 700 Fig. 3. The likelihood function is the product of Poisson C2.M1 Sfb P-1,r eelmim cihnaanrny,e l s = 7 TeV dtWata probabilitiesoverall9channels: 600 tt Z/g*+jets 500 Other L(p|n)=(cid:89)9 µniieµi -11 fb400 i=1 ni! s / 2. nt300 e v where n is the number of observed events in channel i e i 200 and µ is the predicted event yield which depends on the i modelparametersp.Systematicuncertaintiesareincluded 100 asnuisanceparametersaslog-normaluncertaintieswhich change the predicted yield µi correlated across all chan- 1 jet 1 tag 2 jet 1 tag 2 jet 2 tag nels. Thecrosssectionisextractedusingaprofilelikelihood (a) technique.Thesignificanceisevaluatedusingthedistribu- tionofaprofilelikelihoodratioteststatisticfortoyexperi- mentsincludingnosignal.Fortoygeneration,thenuisance 350 C2.M1 Sfb P-1,r memlim chinaanrny,e l s = 7 TeV dtWata parametersaredrawnrandomlyaccordingtotheirpriors. tt 300 Z/g*+jets Other -1b250 6 Result 2.1 f200 s / nt e150 TheextractedsingletoptWcrosssectionis ev 100 σ =22+9pb tW −7 50 which is consistent with the Standard Model prediction. 1 jet 1 tag 2 jet 1 tag 2 jet 2 tag The uncertainty includes the statistical and all systematic uncertaintiesdiscussedinSection4. (b) The probability that the observed excess of events is merelyanupwardfluctuationofbackgroundwithavanish- ingtWcrosssectioncorrespondsto2.7σ,theexpectedsig- 200 CMS Preliminary, s = 7 TeV data nificancefortheStandardModelcrosssectionis1.8±0.9σ. 2.1 fb-1, ee channel tW 180 tt Moredetailsaboutthisanalysiscanbefoundin[8]. Z/g*+jets 160 Other -1b140 2.1 f120 References s / 100 nt ve 80 e 1. Frixione, Laenen, Motylinski et al., JHEP 07 (2008) 60 029 40 2. Kidonakis,Phys.Rev.D82(2010)054018 20 3. TheCMSCollaboration,JINST0803(2008)08004 1 jet 1 tag 2 jet 1 tag 2 jet 2 tag 4. Kidonakis,Phys.Rev.D82(2010)114030 5. The CMS Collaboration, Physics Analysis Summary (c) JME-10-010(2010) 6. The CMS Collaboration, Physics Analysis Summary JME-10-014(2010) 1200 CMS Preliminary, s = 7 TeV data 7. The CMS Collaboration, Physics Analysis Summary 2.1 fb-1, ee/em /m m tW tt BTV-10-001(2010) 1000 Z/g*+jets 8. The CMS Collaboration, Physics Analysis Summary Other TOP-11-022(2011) -11 fb800 2. s / 600 nt e v e 400 200 1 jet 1 tag 2 jet 1 tag 2 jet 2 tag (d) Fig.3.Obervedandpredictednumberofeventsinallleptonand jet/b-taggingcategories.Thepredictionisevaluatedatthemax- imumofthelikelihoodfunction.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.