82 Search for double beta decay of Se with the NEMO-3 detector and development of apparatus for low-level radon measurements for the SuperNEMO experiment James Mott University College London Submitted to University College London in fulfilment of the requirements for the award of the degree of Doctor of Philosophy September 25th, 2013 1 Declaration I, James Mott, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. James Mott 2 Abstract The 2νββ half-life of 82Se has been measured as T2ν = (9.93± 1/2 0.14(stat)±0.72(syst))×1019 yr using a 932 g sample measured for a total of 5.25 years in the NEMO-3 detector. The corresponding nuclear matrix element is found to be |M2ν| = 0.0484±0.0018. In addition, a search for 0νββ in the same isotope has been conducted and no evidence for a signal has been observed. The resulting half- life limit of T0ν > 2.18×1023 yr (90% CL) for the neutrino mass 1/2 mechanism corresponds to an effective Majorana neutrino mass of (cid:104)m (cid:105) < 1.0−2.8 eV (90% CL). Furthermore, constraints on lepton ββ number violating parameters for other 0νββ mechanisms, such as right-handed current and Majoron emission modes, have been set. SuperNEMO is the successor to NEMO-3 and will be one of the next generation of 0νββ experiments. It aims to measure 82Se with an half-life sensitivity of 1026 yr corresponding to (cid:104)m (cid:105) < 50 − ββ 100 meV. Radon can be one of the most problematic backgrounds to any 0νββ search due to the high Q value of its daughter ββ isotope, 214Bi. In order to achieve the target sensitivity, the radon concentration inside the tracking volume of SuperNEMO must be less than 150 µBq/m3. This low level of radon is not measurable with standard radon detectors, so a “radon concentration line” has been designed and developed. This apparatus has a sensitivity to radon concentration in the SuperNEMO tracker at the level of 40 µBq/m3, and has performed the first measurements of the radon level inside a sub-section of SuperNEMO, which is under construction. It has also been used to measure the radon content of nitrogen and helium gas cylinders, which are found to be in the ranges 70−120 µBq/m3 and 370−960 µBq/m3, respectively. 3 Acknowledgements First and foremost, I would like to express my extreme gratitude to my supervisor, Ruben Saakyan, without whose guidance this thesis would not have been possible. As annoying as it may be, always knowing the answer to any question I might pose, no matter how obscure, is certainly a very useful trait to have as a supervisor. In addition, my thanks go to Stefano Torre, David Waters and Adam Davison for many constructive conversations on analysis techniques and software issues - I am sure I would have spent a lot more time groping in the dark without this guiding influence. In the same vein, collaborative work with fellow NEMO-3 students at other institutions, in particular Sophie Blondel and Summer Blot, was also pivotal in producing a coherent analysis. Away from a computer screen and back in the real world, I am indebted to Derek Attree and Brian Anderson for their technical expertise and for their patience as I attempted to develop basic engineering skills. Without them, none of the real ‘screw-driver’ physics in this thesis would have been remotely functional. I am also truly appreciative of the camaraderie shared with my fellow lab rats, Cristóvão Vilela and Xin Ran Liu. Away from phyics, the love and support from my family has been a comforting presence, not just for this PhD but throughout my life. For this, I feely greatly blessed. Finally, special thanks go to Clara for her unflinching support throughout this whole process and for ensuring that my funding lasted as long as necessary with such rigorous budgeting. 4 Contents List of Figures 11 List of Tables 16 1. Introduction 18 1.1. NEMO-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.2. SuperNEMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.3. Author’s Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.3.1. NEMO-3 Contributions . . . . . . . . . . . . . . . . . . . . . . 22 1.3.2. SuperNEMO Contributions . . . . . . . . . . . . . . . . . . . 23 2. Neutrino Phenomenology 25 2.1. Standard Model Neutrinos . . . . . . . . . . . . . . . . . . . . . . . . 25 2.1.1. Discovery of the Neutrino . . . . . . . . . . . . . . . . . . . . 25 2.1.2. Neutrino Interactions . . . . . . . . . . . . . . . . . . . . . . . 25 2.1.3. Neutrino Flavours . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2. Neutrino Mixing and Oscillations . . . . . . . . . . . . . . . . . . . . 28 2.2.1. Oscillation Phenomenology . . . . . . . . . . . . . . . . . . . . 29 2.2.2. Oscillations in Matter . . . . . . . . . . . . . . . . . . . . . . 30 2.2.3. Measurement of Oscillation Parameters . . . . . . . . . . . . . 31 2.3. Neutrino Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3.1. Dirac Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3.2. Majorana Mass . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3.3. See-saw Mechanism . . . . . . . . . . . . . . . . . . . . . . . . 34 2.4. Experimental Constraints on Neutrino Mass . . . . . . . . . . . . . . 36 2.4.1. Tritium Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.4.2. Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.4.3. Neutrinoless double beta decay (0νββ) . . . . . . . . . . . . . 38 5 Contents 6 2.4.4. Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.5. Outstanding questions . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.5.1. Number of neutrinos . . . . . . . . . . . . . . . . . . . . . . . 39 2.5.2. Absolute Mass and Mass Hierarchy . . . . . . . . . . . . . . . 40 2.5.3. CP Violation . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.5.4. Nature of the neutrino . . . . . . . . . . . . . . . . . . . . . . 42 3. Double Beta Decay 43 3.1. Beta Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.1.1. Allowed and Forbidden Decays . . . . . . . . . . . . . . . . . 44 3.2. Two Neutrino Double Beta Decay . . . . . . . . . . . . . . . . . . . . 45 3.3. Neutrinoless Double Beta Decay . . . . . . . . . . . . . . . . . . . . . 46 3.3.1. Neutrino Mass Mechanism . . . . . . . . . . . . . . . . . . . . 48 3.3.2. Right-handed Current . . . . . . . . . . . . . . . . . . . . . . 49 3.3.3. Majoron Emission . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.4. Nuclear Matrix Elements . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.4.1. Interacting Shell Model . . . . . . . . . . . . . . . . . . . . . . 55 3.4.2. Quasiparticle Random Phase Approximation . . . . . . . . . . 56 3.4.3. Interacting Boson Model . . . . . . . . . . . . . . . . . . . . . 56 3.4.4. Projected Hartree-Fock-Bogoluibov Method . . . . . . . . . . 56 3.4.5. Energy Density Functional Method . . . . . . . . . . . . . . . 57 3.4.6. Comparison of different NME calculations . . . . . . . . . . . 57 4. Double Beta Decay Experiments 59 4.1. Detector Design Considerations . . . . . . . . . . . . . . . . . . . . . 59 4.1.1. Maximising Signal . . . . . . . . . . . . . . . . . . . . . . . . 60 4.1.2. Minimising Background . . . . . . . . . . . . . . . . . . . . . 62 4.2. Detector Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.2.1. Semiconductor Experiments . . . . . . . . . . . . . . . . . . . 63 4.2.2. Scintillation Experiments . . . . . . . . . . . . . . . . . . . . . 67 4.2.3. Bolometer Experiments . . . . . . . . . . . . . . . . . . . . . . 70 4.2.4. Time Projection Chamber Experiments . . . . . . . . . . . . . 71 4.2.5. Tracker-Calorimeter Experiments . . . . . . . . . . . . . . . . 73 4.3. Double Beta Decay Measurements . . . . . . . . . . . . . . . . . . . . 74 4.3.1. 2νββ Measurements . . . . . . . . . . . . . . . . . . . . . . . 74 4.3.2. 0νββ Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Contents 7 4.3.3. Future Measurement Prospects . . . . . . . . . . . . . . . . . 77 I. ββ-decay of 82Se with NEMO-3 79 5. NEMO-3 Detector 80 5.1. Source Foils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.1.1. 82Se Source Foils . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.2. Tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.3. Calorimeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.4. Electronics, DAQ and Trigger . . . . . . . . . . . . . . . . . . . . . . 89 5.4.1. Calorimeter Electronics . . . . . . . . . . . . . . . . . . . . . . 90 5.4.2. Tracker Electronics . . . . . . . . . . . . . . . . . . . . . . . . 90 5.4.3. Trigger System . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.5. Energy and Time Calibration . . . . . . . . . . . . . . . . . . . . . . 92 5.5.1. Radioactive Sources . . . . . . . . . . . . . . . . . . . . . . . . 92 5.5.2. Laser Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.6. Magnetic Coil and Passive Shielding . . . . . . . . . . . . . . . . . . 94 5.6.1. Magnetic Coil . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.6.2. Mount Fréjus . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.6.3. Iron Shield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.6.4. Neutron Shielding . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.7. Anti-radon facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6. General Analysis Techniques 97 6.1. Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.2. Reconstruction of Events . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.3. Particle Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.3.1. Electron Identification . . . . . . . . . . . . . . . . . . . . . . 98 6.3.2. Gamma Identification . . . . . . . . . . . . . . . . . . . . . . 100 6.3.3. Alpha Identification . . . . . . . . . . . . . . . . . . . . . . . . 101 6.4. Time of Flight Information . . . . . . . . . . . . . . . . . . . . . . . . 102 6.4.1. Internal Probability . . . . . . . . . . . . . . . . . . . . . . . . 103 6.4.2. External Probability . . . . . . . . . . . . . . . . . . . . . . . 105 6.5. Analysis Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Contents 8 6.6. Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.6.1. Fitting MC Distributions to Data . . . . . . . . . . . . . . . . 107 6.6.2. Extracting Limits on Signal Strength . . . . . . . . . . . . . . 109 6.7. Half-life Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 7. Estimation of Backgrounds for the 82Se Source Foils 112 7.1. Sources of NEMO-3 Background . . . . . . . . . . . . . . . . . . . . . 113 7.2. NEMO-3 Background Classification . . . . . . . . . . . . . . . . . . . 117 7.2.1. Internal Backgrounds . . . . . . . . . . . . . . . . . . . . . . . 117 7.2.2. External Backgrounds . . . . . . . . . . . . . . . . . . . . . . 119 7.2.3. Radon Backgrounds . . . . . . . . . . . . . . . . . . . . . . . 122 7.3. Channels for Background Measurements . . . . . . . . . . . . . . . . 124 7.3.1. General Quality Criteria . . . . . . . . . . . . . . . . . . . . . 125 7.3.2. Hot Spot Search . . . . . . . . . . . . . . . . . . . . . . . . . 125 7.3.3. 1e1α Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 7.3.4. 1e2γ Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 7.3.5. 1e1γ Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 7.3.6. 1e Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 7.4. Results of Background Measurements . . . . . . . . . . . . . . . . . . 132 7.4.1. Fitting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 132 7.4.2. Activity Estimations . . . . . . . . . . . . . . . . . . . . . . . 135 7.4.3. Control Distributions . . . . . . . . . . . . . . . . . . . . . . . 144 8. Double Beta Decay Results for 82Se 148 8.1. Optimisation of 2νββ Cuts . . . . . . . . . . . . . . . . . . . . . . . . 149 8.1.1. Starting Point for Optimisation . . . . . . . . . . . . . . . . . 149 8.1.2. Optimisation Procedure . . . . . . . . . . . . . . . . . . . . . 152 8.1.3. Optimisation Results . . . . . . . . . . . . . . . . . . . . . . . 154 8.2. 2νββ Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 8.2.1. Re-measurement of Background Activities . . . . . . . . . . . 159 8.2.2. 2νββ Distributions . . . . . . . . . . . . . . . . . . . . . . . . 163 8.2.3. 2νββ systematics . . . . . . . . . . . . . . . . . . . . . . . . . 167 8.2.4. 2νββ Half-life Measurement . . . . . . . . . . . . . . . . . . . 170 8.3. Optimisation of 0νββ Cuts . . . . . . . . . . . . . . . . . . . . . . . . 171 8.4. 0νββ Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 8.4.1. Mass Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . 176 Contents 9 8.4.2. Right-handed Current . . . . . . . . . . . . . . . . . . . . . . 178 8.4.3. Majoron Emission . . . . . . . . . . . . . . . . . . . . . . . . . 181 II. Radon Research and Development for SuperNEMO 184 9. The SuperNEMO Experiment 185 9.1. SuperNEMO Baseline Design . . . . . . . . . . . . . . . . . . . . . . 185 9.2. Research and Development . . . . . . . . . . . . . . . . . . . . . . . . 187 9.3. Timescale and Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . 189 10.Radon and SuperNEMO 192 10.1.Properties of Radon . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 10.2.Radon as a SuperNEMO Background . . . . . . . . . . . . . . . . . . 194 10.3.Radon Suppression with Gas Flow . . . . . . . . . . . . . . . . . . . . 194 10.4.222Rn Decay Chain to 214Po . . . . . . . . . . . . . . . . . . . . . . . 197 10.4.1. 222Rn Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 10.4.2. 218Po Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 10.4.3. 214Pb Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 10.4.4. 214Bi Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 10.4.5. 214Po Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 10.4.6. Decay chain activities . . . . . . . . . . . . . . . . . . . . . . . 203 11.Electrostatic Detector and Radon Concentration Line 204 11.1.Electrostatic Detector . . . . . . . . . . . . . . . . . . . . . . . . . . 205 11.1.1. Detector Signal . . . . . . . . . . . . . . . . . . . . . . . . . . 207 11.1.2. Detector Efficiency Calibration . . . . . . . . . . . . . . . . . 211 11.1.3. Detector Background Measurement . . . . . . . . . . . . . . . 214 11.2.Radon Concentration Line (RnCL) . . . . . . . . . . . . . . . . . . . 215 11.2.1. Design and Construction . . . . . . . . . . . . . . . . . . . . . 216 11.2.2. Trapping Efficiency . . . . . . . . . . . . . . . . . . . . . . . . 218 11.2.3. Trap Background . . . . . . . . . . . . . . . . . . . . . . . . . 223 12.Radon Concentration Line Sensitivity Estimates 225 12.1.Minimum Detectable Activity . . . . . . . . . . . . . . . . . . . . . . 225 12.1.1. Normal Approximation . . . . . . . . . . . . . . . . . . . . . . 227 12.2.Electrostatic Detector Sensitivity . . . . . . . . . . . . . . . . . . . . 228 Contents 10 12.3.Uniform Gas Measurement . . . . . . . . . . . . . . . . . . . . . . . . 231 12.4.C-Section Measurement . . . . . . . . . . . . . . . . . . . . . . . . . 232 13.Low-level Radon Measurements 236 13.1.Gas System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 13.2.Gas Cylinders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 13.2.1. Modelling Cylinder Activity . . . . . . . . . . . . . . . . . . . 238 13.2.2. Measuring Full Cylinders . . . . . . . . . . . . . . . . . . . . . 240 13.2.3. Measuring Used Cylinders . . . . . . . . . . . . . . . . . . . . 242 13.3.C-section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 13.3.1. Measurement Starting Point . . . . . . . . . . . . . . . . . . . 244 13.3.2. Extracting C-section Activity . . . . . . . . . . . . . . . . . . 246 13.3.3. Anti-Radon Tent . . . . . . . . . . . . . . . . . . . . . . . . . 247 13.3.4. C-section Results . . . . . . . . . . . . . . . . . . . . . . . . . 247 14.Conclusion 251 Bibliography 255
Description: