ebook img

Scientific Computing: A Historical Perspective PDF

271 Pages·2018·3.993 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Scientific Computing: A Historical Perspective

17 Bertil Gustafsson Scientifi c Computing A Historical Perspective Editorial Board T. J.Barth M.Griebel D.E.Keyes R.M.Nieminen D.Roose T.Schlick Texts in Computational 17 Science and Engineering Editors TimothyJ. Barth MichaelGriebel DavidE. Keyes RistoM. Nieminen DirkRoose TamarSchlick Moreinformationaboutthisseriesathttp://www.springer.com/series/5151 Bertil Gustafsson Scientific Computing A Historical Perspective 123 BertilGustafsson DepartmentofInformationTechnology UppsalaUniversity Uppsala,Sweden ISSN1611-0994 ISSN2197-179X (electronic) TextsinComputationalScienceandEngineering ISBN978-3-319-69846-5 ISBN978-3-319-69847-2 (eBook) https://doi.org/10.1007/978-3-319-69847-2 LibraryofCongressControlNumber:2018953059 MathematicsSubjectClassification(2010):65-XX,68-XX,01-XX ©SpringerInternationalPublishingAG,partofSpringerNature2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. Cover illustration: Figure 2.1 showing the Babylonian clay tablet. (The clay tablet YBC7289. From the Yale Babylonian Collection, with the assistance and permission of William Hallo, Curator, and UllaKasten,AssociateCurator.PhotobyBillCasselman,http://www.math.ubc.ca/_cass/Euclid/ybc/ybc. html.) ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Scienceandtechnologyaretraditionallybasedontheoryandexperiments,butnow- adaysscientificcomputingisanestablishedthirdbranchofstrategicimportance.It is based on mathematicalmodels, some of which were developedmany centuries ago.Mostofthesemodelsareintheformofdifferentkindsofequationsthatmust besolved,andintheidealcase,onecanfindthesolutionsbyanalyticmeansinthe formofanexplicitmathematicalform,asforexamplea functionf(x,y)thatcan beeasilyevaluatedforanyvalueoftheindependentvariablesx andy.However,in mostrealisticcasesthisisnotpossible,andnumericalmethodsmustbeusedtofind accurate approximationsof the solutions to the mathematical model. The concept of scientific computing usually means the whole procedure including analysis of the mathematical model, development and analysis of a numerical method, programmingtheresultingalgorithm,andfinallyrunningitona computer.Today, there are many systems that include the whole chain and require only specifying the physicalparametersfor the problemto be solved numerically.However,there arealwaysnewchallengeswithnewtypesofmathematicalmodelsthatrequirenew numericalmethods. This book is about some of the most significant problem areas and the history oftheprocessleadingtoefficientnumericalmethods.Mathematicsintheolddays was veryclosely connectedto astronomy,which was always the major source for new mathematical problems up to the nineteenth century. According to Galileo Galilei(1564–1642),“thebookofnatureiswritteninthelanguageofmathematics,” and this was particularly true for astronomy. As we shall see, many of the most famousmathematiciansinthepastcouldaswellhavebeencalledastronomers.For example,perhapsthemostfamousmathematicianofalltime,CarlFriedrichGauss (1777–1855),was the directorof the German astronomicalobservatoryGöttingen Observatoryfor48years. Today, there is a clear distinction between pure mathematics and applied mathematicswith scientific computingquite far frompure mathematics.Thiswas notthecaseintheolddays.Mathematiciansfoundnewmodelsforvariousphysical problems,buttheyalsocarriedoutthenecessarycomputationstofindtheunknown v vi Preface numberstheywerelookingfor.Atypicalexamplewastopredictthefuturelocation ofacertainplanetbasedonafewavailableobservations. Thecontentofthisbookisdividedintofourparts.Thefirstisabouttheveryearly mathematical/numerical achievements made by the Babylonians and the Greeks. AfterthatnotmuchhappeneduntiltheseventeenthcenturywhenNewtonandothers developednew mathematics,and the second partis aboutthe developmentduring the centuries until the Second World War. Just at the end of the war, scientific computingtookagiantstepforwardwiththeconstructionofelectroniccomputers. Nownumericalmethodsthatearlierledtocomputationsofimpossiblesizecouldbe implementedonthesecomputerswithresultsobtainedafterafewhours.Inthisnew situation,thedevelopmentofnewmethodsbecamemuchmoreinteresting,andthe existence of electronic computers provided a strong boost for numerical analysis and scientific computing. The third part of the book is about this postwar period until the end of the 1950s. Around that time, scientific computingbecame a third scientificmethodinadditiontothetraditionalbranchesintheoryandexperiments. Thefourthpartofthebookcoverstheperioduntilthepresenttime. The major numericalmethodsare traced back to their origin and to the people whoinventedthem,aswellastotheoriginofimportanttechniquesforanalysisof themethods.Thereisalso shortpresentationsofsomeofthemathematicianswho played a key role in this process. There is certainly not a complete description of the whole story behind all methods, but rather an attempt to catch the key steps without going into a complete mathematical derivation. There is also a very brief presentationofthedevelopmentofelectroniccomputers,particularlytheearlyones. Differentialequationsarethedominatingtypeofmathematicalmodelsforalmost everybranchofscience and engineering,andthere are severaldifferentprinciples thatareusedwhendevelopingnumericalmethodsforthesolutionoftheseproblems. Therefore,differentialequationsaregivensomeextraspaceinthisbook. Onedifficultywhengoingbackintimeisthattheoriginalarticlesarenotalways easy to read and understand. During the active period from the sixteenth to the nineteenthcentury,Latinwasacommonlanguageformathematicaltexts.Another majordifficultywasthewaymathematicswasdescribed.Manysymbolsusedtoday were notintroducedatthat time, andnumericalmethodswere describedin words inquitealengthyandcomplicatedway.Infact,insomecasesthereisstillacertain uncertaintyaboutthe exactmeaningof the description,and a consequenceof this maybethattherealinventorofacertainmethodisnotknownforsure. Weareawareofthefactthatthewholeareaofscientificcomputingisnotcovered inthisbook.Therearemanytechniquesandmethodsthatareleftoutorjustbriefly mentioned,andtherearemanymathematicianswhocouldhavebeenincludedbut arenot.Thebookisintendedtogivethebigpictureandthehistoricaldevelopment behindtheriseofscientificcomputingasanewscientificbranch. Thecontentofthisbookisbasedonalargenumberofsourcesinadditiontothe originalbooksandarticlesinthereferencelist.Itisimpossibletogiveallofthese sources, in particularfor some of the notesconcerningimportantmathematicians, butasfaraspossible,correctnesshasbeenchecked. Preface vii Hopefully,thebookwillbeavaluableresourceforallstudentsandprofessionals interested in the history of numerical analysis and computing and for a broader readershipalike. Uppsala,Sweden BertilGustafsson Acknowledgments ThisbookwaswrittenaftermyretirementfromthechairattheDivisionofScientific ComputingatUppsalaUniversity.TheDepartmentofInformationTechnologyhas stillprovidedfullaccesstothenecessaryinfrastructure,whichismuchappreciated. Martin Peters and Ruth Allewelt at Springer have been helpful, in particular whenitcomestocopyrightissues.AnnKostantcorrectedlanguagedeficienciesand misprints, and I am impressed by her ability to find so many errors and language detailsthatrequiredcorrection. Finally, I would like to thank my wife Margaretafor accepting and supporting myfullengagementinwritingstillanotherbook. ix Contents 1 ScientificComputing:AnIntroduction.................................... 1 2 ComputationFarBackinTime ............................................ 5 2.1 TheBabylonians....................................................... 6 2.2 ArchimedesandIterativeMethods ................................... 10 2.3 ChineseMathematics.................................................. 15 3 TheCenturiesBeforeComputers.......................................... 17 3.1 NonlinearAlgebraicEquations ....................................... 19 3.1.1 TheFixedPointMethod..................................... 19 3.1.2 NewtonMethods............................................. 20 3.2 Interpolation ........................................................... 25 3.3 Integrals................................................................ 32 3.4 TheLeastSquaresMethod............................................ 36 3.5 GaussandLinearSystemsofEquations.............................. 42 3.6 SeriesExpansion....................................................... 46 3.6.1 TaylorSeries ................................................. 47 3.6.2 OrthogonalPolynomialExpansions ........................ 48 3.6.3 FourierSeries ................................................ 51 3.6.4 TheGibbsPhenomenon ..................................... 55 3.6.5 TheFourierTransform....................................... 56 3.7 OrdinaryDifferentialEquations(ODE) .............................. 58 3.7.1 TheEulerMethod............................................ 58 3.7.2 AdamsMethods.............................................. 61 3.7.3 Runge–KuttaMethods....................................... 64 3.7.4 RichardsonExtrapolation.................................... 65 3.8 PartialDifferentialEquations(PDE) ................................. 68 3.8.1 TheRitz–GalerkinMethod.................................. 69 3.8.2 Courant’sArticleonFEM................................... 72 3.8.3 Richardson’sFirstPaperonDifferenceMethods........... 75 3.8.4 WeatherPrediction;AFirstAttempt........................ 77 3.8.5 TheCFL-Article ............................................. 79 xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.