Table Of ContentCAMBRIDGE STUDIES IN ADVANCED MATHEMATICS 200
EditorialBoard
J. BERTOIN, B. BOLLOBA´S, W. FULTON, B. KRA, I. MOERDIJK,
C. PRAEGER, P. SARNAK, B. SIMON, B. TOTARO
SCHRO¨DINGEROPERATORS:EIGENVALUES
ANDLIEB–THIRRINGINEQUALITIES
TheanalysisofeigenvaluesofLaplaceandSchro¨dingeroperatorsisanimportantand
classical topic in mathematical physics with many applications. This book presents
a thorough introduction to the area, suitable for masters and graduate students, and
includes an ample amount of background material on the spectral theory of linear
operatorsinHilbertspacesandonSobolevspacetheory.
OfparticularinterestisafamilyofinequalitiesbyLiebandThirringoneigenvalues
ofSchro¨dingeroperators,whichtheyusedintheirproofofstabilityofmatter.Thefinal
partofthisbookisdevotedtotheactiveresearchonsharpconstantsintheseinequalities
andcontainsstate-of-the-artresults,servingasareferenceforexpertsandasastarting
pointforfurtherresearch.
RupertL.Frank holdsachairinappliedmathematicsatLMUMunichandisdoing
researchprimarilyinanalysisandmathematicalphysics.Heisaninvitedspeakeratthe
2022InternationalCongressofMathematics.
Ari Laptev is Professor at Imperial College London. His research interests include
differentaspectsofspectraltheoryandfunctionalinequalities.Heisamemberofthe
RoyalSwedishAcademyofScience,aFellowofEurAScandamemberofAcademia
Europaea.
TimoWeidl isProfessorattheUniversityofStuttgart.Heworksonspectraltheory
andmathematicalphysics.
Published online by Cambridge University Press
CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS
EditorialBoard
J.Bertoin,B.Bolloba´s,W.Fulton,B.Kra,I.Moerdijk,C.Praeger,P.Sarnak,B.Simon,B.Totaro
AllthetitleslistedbelowcanbeobtainedfromgoodbooksellersorfromCambridgeUniversityPress.Fora
completeserieslisting,visitwww.cambridge.org/mathematics.
AlreadyPublished
162C.J.Bishop&Y.PeresFractalsinProbabilityandAnalysis
163A.BovierGaussianProcessesonTrees
164P.SchneiderGaloisRepresentationsand(ϕ,(cid:3))-Modules
165P.Gille&T.SzamuelyCentralSimpleAlgebrasandGaloisCohomology(2ndEdition)
166D.Li&H.QueffelecIntroductiontoBanachSpaces,I
167D.Li&H.QueffelecIntroductiontoBanachSpaces,II
168J.Carlson,S.Mu¨ller-Stach&C.PetersPeriodMappingsandPeriodDomains(2ndEdition)
169J.M.LandsbergGeometryandComplexityTheory
170J.S.MilneAlgebraicGroups
171J.Gough&J.KupschQuantumFieldsandProcesses
172T.Ceccherini-Silberstein,F.Scarabotti&F.TolliDiscreteHarmonicAnalysis
173P.GarrettModernAnalysisofAutomorphicFormsbyExample,I
174P.GarrettModernAnalysisofAutomorphicFormsbyExample,II
175G.NavarroCharacterTheoryandtheMcKayConjecture
176P.Fleig,H.P.A.Gustafsson,A.Kleinschmidt&D.PerssonEisensteinSeriesandAutomorphic
Representations
177E.PetersonFormalGeometryandBordismOperators
178A.OgusLecturesonLogarithmicAlgebraicGeometry
179N.NikolskiHardySpaces
180D.-C.CisinskiHigherCategoriesandHomotopicalAlgebra
181A.Agrachev,D.Barilari&U.BoscainAComprehensiveIntroductiontoSub-RiemannianGeometry
182N.NikolskiToeplitzMatricesandOperators
183A.YekutieliDerivedCategories
184C.DemeterFourierRestriction,DecouplingandApplications
185D.Barnes&C.RoitzheimFoundationsofStableHomotopyTheory
186V.Vasyunin&A.VolbergTheBellmanFunctionTechniqueinHarmonicAnalysis
187M.Geck&G.MalleTheCharacterTheoryofFiniteGroupsofLieType
188B.RichterCategoryTheoryforHomotopyTheory
189R.Willett&G.YuHigherIndexTheory
190A.BobrowskiGeneratorsofMarkovChains
191D.Cao,S.Peng&S.YanSingularlyPerturbedMethodsforNonlinearEllipticProblems
192E.KowalskiAnIntroductiontoProbabilisticNumberTheory
193V.GorinLecturesonRandomLozengeTilings
194E.Riehl&D.VerityElementsof∞-CategoryTheory
195H.KrauseHomologicalTheoryofRepresentations
196F.Durand&D.PerrinDimensionGroupsandDynamicalSystems
197A.ShefferPolynomialMethodsandIncidenceTheory
198T.Dobson,A.Malnicˇ&D.MarusˇicˇSymmetryinGraphs
199K.S.Kedlayap-adicDifferentialEquations
200R.L.Frank,A.Laptev&T.WeidlSchro¨dingerOperators:EigenvaluesandLieb–ThirringInequalities
201J.vanNeervenFunctionalAnalysis
Published online by Cambridge University Press
Schro¨dinger Operators:
Eigenvalues and Lieb–Thirring
Inequalities
RUPERT L. FRANK
Ludwig-Maximilians-Universita¨tMu¨nchen
ARI LAPTEV
ImperialCollegeofScience,TechnologyandMedicine,London
TIMO WEIDL
Universita¨tStuttgart
Published online by Cambridge University Press
UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom
OneLibertyPlaza,20thFloor,NewYork,NY10006,USA
477WilliamstownRoad,PortMelbourne,VIC3207,Australia
314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre,
NewDelhi–110025,India
103PenangRoad,#05–06/07,VisioncrestCommercial,Singapore238467
CambridgeUniversityPressispartoftheUniversityofCambridge.
ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof
education,learning,andresearchatthehighestinternationallevels
ofexcellence.
www.cambridge.org
Informationonthistitle:www.cambridge.org/9781009218467
DOI:10.1017/9781009218436
©RupertL.Frank,AriLaptev,andTimoWeidl2023
Thispublicationisincopyright.Subjecttostatutoryexception
andtotheprovisionsofrelevantcollectivelicensingagreements,
noreproductionofanypartmaytakeplacewithoutthewritten
permissionofCambridgeUniversityPress.
Firstpublished2023
AcataloguerecordforthispublicationisavailablefromtheBritishLibrary.
ISBN978-1-009-21846-7Hardback
CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof
URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication
anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain,
accurateorappropriate.
Published online by Cambridge University Press
To
Semra,SamiandSima
To
Marilyn,Maria,Vanya,KatyaandEugenia
To
Galia,AdiandAlex
Published online by Cambridge University Press
Published online by Cambridge University Press
Contents
Preface pagexi
Overview 1
PARTONE BACKGROUNDMATERIAL 5
1 ElementsofOperatorTheory 7
1.1 Hilbertspaces,self-adjointoperatorsandthespectral
theorem 8
1.2 Semiboundedoperatorsandforms,andthevariational
principle 29
1.3 Comments 64
2 ElementsofSobolevSpaceTheory 66
2.1 Weakderivatives 67
2.2 Sobolevspaces 85
2.3 Compactembeddings 96
2.4 Sobolevinequalitiesonthewholespace 103
2.5 FriedrichsandPoincaréinequalities 112
2.6 Hardyinequalities 127
2.7 HomogeneousSobolevspaces 142
2.8 Theextensionproperty 146
2.9 Comments 157
PARTTWO THELAPLACEANDSCHRÖDINGER
OPERATORS 165
3 TheLaplacianonaDomain 167
3.1 TheDirichletandNeumannLaplacians 170
3.2 Weyl’sasymptoticformulafortheDirichletLaplacian 179
vii
Published online by Cambridge University Press
viii Contents
3.3 Weyl’sasymptoticformulafortheNeumannLaplacian 192
3.4 Pólya’sinequalityfortilingdomains 197
3.5 Lower bounds for the eigenvalues of the Dirichlet
Laplacian 199
3.6 Upper bounds for the eigenvalues of the Neumann
Laplacian 209
3.7 Phasespaceinterpretation 212
3.8 Appendix:TheLaplacianinsphericalcoordinates 219
3.9 Comments 232
4 TheSchrödingerOperator 244
4.1 DefinitionoftheSchrödingeroperator 247
4.2 Explicitlysolvableexamples 251
4.3 BasicspectralpropertiesofSchrödingeroperators 265
4.4 Weyl’sasymptoticformulaforSchrödingeroperators 279
4.5 TheCwikel–Lieb–Rozenbluminequality 282
4.6 TheLieb–Thirringinequality 292
4.7 Extendinginequalitiesandasymptotics 298
4.8 ReversedLieb–Thirringinequality 303
4.9 Comments 308
PARTTHREE SHARPCONSTANTSIN
LIEB–THIRRINGINEQUALITIES 319
5 SharpLieb–ThirringInequalities 321
5.1 BasicfactsaboutLieb–Thirringconstants 323
5.2 Lieb–Thirringinequalitiesforspecialclassesofpotentials 335
5.3 Thesharpboundforγ = 1 inonedimension 349
2
5.4 Thesharpboundforγ = 3 inonedimension 353
2
5.5 Traceformulasforone-dimensionalSchrödingeroperators 362
5.6 Comments 380
6 SharpLieb–ThirringInequalitiesinHigherDimensions 385
6.1 Schrödingeroperatorswithmatrix-valuedpotentials 388
6.2 The Lieb–Thirring inequality with the semiclassical
constant 395
6.3 Thesharpboundinthematrix-valuedcaseforγ = 3 400
2
6.4 Traceformulasinthematrixcase 411
6.5 Comments 414
7 MoreonSharpLieb–ThirringInequalities 417
7.1 Monotonicitywithrespecttothesemiclassicalparameter 418
7.2 Boundsforradialpotentials 426
Published online by Cambridge University Press
Contents ix
7.3 Moreontheone-particleconstants 434
7.4 ThedualLieb–Thirringinequality 436
7.5 Comments 448
8 MoreontheLieb–ThirringConstants 451
8.1 MoreonLieb–Thirringinequalitiesinthematrix-valued
case 452
8.2 Thesumofthesquarerootsoftheeigenvalues 456
8.3 Thesumoftheeigenvalues 457
8.4 SummaryonconstantsinLieb–Thirringinequalities 463
8.5 Comments 468
References 471
Index 504
Published online by Cambridge University Press