SCHEDULING IN PARALLEL COMPUTING SYSTEMS Fuzzy and Annealing Techniques THE KLUWER INTERNATIONAL SERIES IN ENGINEERING DNA COMPUTER SCIENCE SCHEDULING IN PARALLEL COMPUTING SYSTEMS Fuzzy and Annealing Techniques by Shaharuddin Salleh University of Technology Malaysia Albert Y. Zomaya The University of Westem Australia ..... " SPRINGER SCIENCE+BUSINESS MEDIA, LLC Library of Congress Cataloging-in-Publication Data Salleh Shaharuddin, 1956- Scheduling in parallel computing systems : fuzzy and annealing techniques / by Shaharuddin Salleh, Albert Y. Zomaya. p. cm. -- (Kluwer international series in engineering and computer science ; SECS 510) Includes bibliographical references. ISBN 978-1-4613-7303-2 ISBN 978-1-4615-5065-5 (eBook) DOI 10.1007/978-1-4615-5065-5 1. Parallel processing (Electronic computers) 2. Fuzzy systems. 3. Simulated annealing (Mathematics) 1. Zomaya, Albert Y. II. Title. III. Series. QA76.58.S24 1999 004'.35--dc21 99-24716 CIP Copyright ® 1999 by Springer Science+Business Media New York Originally published by Kluwer Academic Publishers in 1999 Softcover reprint ofthe hardcover Ist edition 1999 AII rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, mechanical, photo copying, recording, or otherwise, without the prior written permission of the publisher, Springer Science+Business Media, LLC. Printed an acid-free paper. For Our Families Nothing in the world is so powerful as an idea whose time has come. Victor Hugo Contents Preface Xl 1 SCHEDULING: SETTING THE SEEN 1 1.1 Introduction 1 5 1.2 Problem Overview 8 1.3 Definitions 1.4 Task Precedence Relationships 12 1.4.1 Objective Function 51 1.5 NP-Completeness and Scheduling 17 1.6 Scope of this Work 18 2 PARALLEL COMPUTING: EXPERIMENTAL PLATFORM 21 2.1 Introduction 22 2.2 Parallel Computers 23 2.3 Transputer-Based Systems 26 2.4 Software Tools for the Transputer 31 2.4.1 Occam 13 2.4.2 Parallel C 32 2.5 FAMTS 34 63 2.6 Summary 3 TASK SCHEDULING: HIGHLIGHTS AND FRAMEWORK 73 73 3.1 List Scheduling Heuristics 93 3.2 Heuristic Clustering Algorithms 04 3.3 Graph Theoretic Approaches Vlll Contents 3.4 Queuing Theory 41 3.5 A Framework for Experiments 42 3.6 Case Study 46 3.7 Parallel Implementation 48 3.8 Summary 54 4 75 STATIC SCHEDULING: MEAN-FIELD ANNEALING 75 4.1 Neural Networks 4.2 An Overview of Mean-Field Annealing 16 4.3 The Graph Partitioning Problem 86 96 4.4 Minimum Interprocessor Communication 4.5 MFA Model for Minimum Interprocessor Communication 17 57 4.6 Implementation Strategy 4.7 Case Study: A Fully-Connected Network 78 4.8 Different Network Topologies 18 4.8.1 Mesh and Hypercube Networks 38 4.8.2 MFA and Machine-Dependent Factors 86 4.8.3 Simulating TS_MFA-2 88 4.9 Summary 90 5 DYNAMIC SCHEDULING: A FUZZY LOGIC APPROACH 39 5.1 Fuzzy Logic 39 59 5.2 Dynamic Scheduling 69 5.3 A Fuzzy Model for Dynamic Task Allocation 5.3.1 Computing Platform 79 5.3.2 Fuzzy Scheduling 89 5.3.3 Simulation Results 601 5.4 Fuzzy Dynamic Scheduling 112 5.4.1 Simulation Results 116 stnetnoC xi 5.5. Implementation 121 5.6 Summary 125 6 SINGLE-ROW ROUTING: ANOTHER COMPUTATIONALLY- 127 INTRACTABLE .PROBLEM 6.1 Introduction 127 6.2 Solving the SRR Problem 131 1.2.6 yrasseceN dna tneiciffuS snoitidnoC 431 6.3 Existing Methods 137 1.3.6 dohteM yb gnraT et .la )4891( 731 2.3.6 dohteM yb uD dna uiL )7891( 931 6.4 Simulated Annealing 140 1.4.6 ygrenE noitalumroF 141 2.4.6 ASS noitatnemelpmI 241 6.5 Comparisons 145 6.6 Summary 146 7 147 EPILOGUE 7.1 Summary of Findings 147 7.2 Open Issues 150 APPENDIX A: GRAPH MULT IPARTITIONING USING MEAN-FIELD 151 ANNEALING APPENDIX B: GENERAL LIST HEURISTIC (GL) 153 :C et al.1984) 155 APPENDIX SINGLE ROW ROUTING (TARNG and 1984) 157 APPENDIX D: SINGLE ROW ROUTING (DU LlU 159 REFERENCES 167 INDEX Preface Scheduling si na important problem that arises ni ynam disciplines, hcus sa economics, ,gnirutcafunam operations ,hcraeser parallel ,gnitupmoc process control, and ynam .srehto ,gniludehcS ylpmis ,detats sevlovni eht allocations of sksat ro jobs ot resources ni hcus a yaw that sezimitpo eht esu of these secruoser according ot emos nevig .airetirc Over eht sraey a tol of hcraeser sah nekat ecalp dna ynam techniques erew proposed ot evlos suoirav secnatsni of the scheduling .melborp The scheduling problem si nwonk ot be etelpmoc-PN (Nondeterministic Polynomial )emit rof eht lareneg esac dna rof ynam detcirtser .secnatsni A parallel computer si eno that consists of a collection of processing stinu that cooperate ot evlos a nevig problem yb gnikrow ylsuoenatlumis no different strap of that .melborp nI principle, there si on limit ot the number of snoitca that nac be executed ni ,lellarap ,suht offering na arbitrary eerged of improvement ni computing ,deeps ,yllaicepse nehw compared ot traditional .srossecorpinu Scheduling smelborp ni parallel computing smetsys laed htiw eht gnippam of sksat .g.e( parts of a )margorp otno na suomonotua target enihcam consisting of lareves processing ,stnemele os sa ot teem emos performance sevitcejbo hcus sa minimum noitucexe emit dna elbatpecca daol .gnicnalab Although ynam saedi erew proposed ot evlos scheduling smelborp rof uniprocessor ,smetsys ton ynam of these saedi can eb extended ot handle scheduling smelborp ni parallel computing .smetsys The yticilpitlum of processors, yromem ,seludom dna other secruoser ni a parallel computing system increases eht ytixelpmoc of eht problem .ylsuodnemert The krow presented ni siht book si based no a seires of experiments dna simulations performed ot yduts eht ytilibaiv of gnisu yzzuF dna Annealing sdohtem ni gnivlos scheduling smelborp rof parallel computing .smetsys The krow proposes wen techniques rof both citats dna cimanyd ,gniludehcs using emerging smgidarap that era :deripsni-yllacigoloib yzzuf ,cigol dleif-naem ,gnilaenna dna simulated .gnilaenna These wen sloot era considered ot eb "intelligent" esuaceb of their capability ni gnitpada in situ ni esnopser ot segnahc ni their environment etrhaet w ton predicted ni .ecnavda Encouraging stluser evah been obtained ni siht book yb using these .sehcaorppa This snaem that these sdohtem can become elbaiv alternatives ot xii Preface classical snoitulos ot eht gniludehcs ,melborp hcihw era yltsom heuristic› .desab hguohtlA scitsirueh era tsubor dna elbailer ni gnivlos certain secnatsni of eht scheduling ,melborp yeht t’nod mees ot krow llew nehw eno sdeen ot obtain snoitulos ot lareneg smrof of eht gniludehcs .melborp nO eht other ,dnah yzzuf ,cigol laruen ,skrowten detalumis ,gnilaenna citeneg ,smhtirogla evolutionary computing ,sledom dna other biologically› inspired seuqinhcet evah neeb yllufsseccus deilppa rof gnivlos a ediw egnar of combinatorial noitazimitpo .smelborp ehT idea ni gnisu eseht sdohtem ni siht krow smets morf their sseccus ni gniniatbo lamitpo snoitulos ot other formidable ,smelborp hcus sa gnilevart namselas dna hparg partitioning problems, that era yrev similar ni erutan ot eht gniludehcs .melborp This ,krow hguorht a number of case ,seiduts sepoh ot esaercni eht awareness ni eht l.ellarap computing ytinummoc of eht potential of hcus wen smgidarap ni gnivlos computationally intractable .smelborp This could etareneg erom interest dna concerted effort ni gniyduts eseht smgidarap dna applying them ot a rediw egnar of lairotanibmoc smelborp taht esira ni parallel .gnitupmoc ,yllaedI eht reader of eht koob dluohs eb enoemos ohw si familiar htiw parallel computing dna dluow ekil ot nrael erom tuoba gniludehcs smelborp rof hcus .smetsys ,revewo Heht koob could eb desu yb a rediw ecneidua hcus sa graduate ,stneduts senior undergraduate ,stneduts ,srehcraeser instructors, ,dna practitioners, ni Computer Engineering dna .ecneicS eW tried ot ekam eht lairetam deniatnoc-fles os that eht reader seod ton evah ot consult ynam external .secnerefer
Description: