ebook img

Scattering of Waves by Wedges and Cones with Impedance Boundary Conditions: ISMB Series PDF

232 Pages·2013·7.398 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Scattering of Waves by Wedges and Cones with Impedance Boundary Conditions: ISMB Series

This book is a systematic and detailed exposition of different analytical techniques used in studying two of the canonical problems, the wave scattering by wedges or cones with impedance boundary conditions. It is the first reference on novel, highly efficient analytical-numerical approaches for wave diffraction by impedance wedges or cones. KEY FEATURES • Development of new approaches which lead to exact (but not explicit) solutions of key canonical problems like diffraction by an impedance wedge or cone. • Calculations of the diffraction or excitation coefficients, including their uniform versions, for the diffracted waves from the edge of the wedge or from the vertex of the cone. • Study of the far-field behavior in diffraction by impedance wedges or cones, reflected waves, space waves from the singular points of the boundary (from edges or tips), and surface waves. • Applicability of the reported solution procedures and formulae to existing software packages designed for solving real-world high-frequency problems encountered in antenna, wave propagation, and radar cross section. AUDIENCE • Researchers in wave phenomena physics. • Radio, optics and acoustics engineers. • Applied mathematicians and specialists in mathematical physics. • Specialists in quantum scattering of many particles. ABOUT THE AUTHORS Mikhail A. Lyalinov is a Professor in the Department of Mathematics and Mathematical Physics at Saint Petersburg University, Russia. He has published more than 50 research papers on different mathematical aspects of diffraction theory and is co-author of two monographs. He is a principal organizer of the annual international “Days on Diffraction” seminars. Ning Yan Zhu is a Privatdozent at the Institute of Radio Frequency Technology, University of Stuttgart, Germany. His research includes rigorous numerical techniques and their applications to antennas and radio wave propagation in complex environments. He has published 25 journal articles and co-authored one monograph in these fields. He is also an editorial advisor of the Alpha Science Series on Wave Phenomena (Oxford, UK). Lyalinov-5220034 lyal5220034˙fm October18,2012 15:54 Scattering of Waves by Wedges and Cones with Impedance Boundary Conditions Lyalinov-5220034 lyal5220034˙fm October18,2012 15:54 The Mario Boella Series on Electromagnetism in Information & Communication TheMarioBoellaseriesofferstextbooksandmonographsinallareasofradioscience,witha specialemphasisontheapplicationsofelectromagnetismtoinformationandcommunication technologies. The series is scientifically and financially sponsored by the Istituto Superiore MarioBoellaaffiliatedwiththePolitecnicodiTorino,Italy,andisscientificallyco-sponsored by the International Union of Radio Science (URSI). It is named to honor the memory of ProfessorMarioBoellaofthePolitecnicodiTorino,whowasapioneerinthedevelopmentof electronicsandtelecommunicationsinItalyforhalfacentury,andaVicePresidentofURSI from1966to1969. ScatteringofWavesbyWedgesandConeswithImpedanceBoundaryConditions, ISMBSeries MikhailA.LyalinovandNingYanZhu Thismonographonscatteringofelectromagneticwavesbyimpedancewedgesandconesis the most comprehensive treatise in existence on a specialized topic that is of great interest to electrical engineers and mathematical physicists. Written by two international experts on scattering and diffraction, it constitutes a fundamental and lasting contribution to the field of applied mathematics. Even though its obvious applications are to radar and to mobile communications,themathematicalmethodsemployedhereinarealsoapplicabletoproblems involvingscatteringofacousticandelasticwaves.Thus,thismonographwillbeofinterestto allresearchersonwavepropagationandwillremainastandardreferencefortheforeseeable future. PiergiorgioL.E.Uslenghi–SeriesEditor Chicago,July2012 Other titles in this series FundamentalsofWavePhenomena,SecondEdition byAkiraHiroseandKarlE.Lonngren Forthcoming titles in this series TheWiener-HopfMethodinElectromagnetics byVitoG.DanieleandRodolfoS.Zich HigherOrderNumericalSolutionTechniquesinElectromagnetics byRobertoD.GragliaandAndrewF.Peterson Lyalinov-5220034 lyal5220034˙fm October18,2012 15:54 Scattering of Waves by Wedges and Cones with Impedance Boundary Conditions ISMB Series Mikhail A. Lyalinov InstituteofPhysics St.PetersburgUniversity St.Petersburg,Russia Ning Yan Zhu Institutfu¨rHochfrequenztechnik Universita¨tStuttgart Stuttgart,Germany Edison,NJ scitechpub.com Lyalinov-5220034 lyal5220034˙fm October18,2012 15:54 PublishedbySciTechPublishing,animprintoftheIET. www.scitechpub.com www.theiet.org Copyright©2013bySciTechPublishing,Edison,NJ.Allrightsreserved. Nopartofthispublicationmaybereproduced,storedinaretrievalsystemortransmittedinanyformorbyany means,electronic,mechanical,photocopying,recording,scanningorotherwise,exceptaspermittedunderSections 107or108ofthe1976UnitedStatedCopyrightAct,withouteitherthepriorwrittenpermissionofthePublisher, orauthorizationthroughpaymentoftheappropriateper-copyfeetotheCopyrightClearanceCenter,222Rosewood Drive,Danvers,MA01923,(978)750-8400,fax(978)646-8600,oronthewebatcopyright.com.Requeststothe PublisherforpermissionshouldbeaddressedtoTheInstitutionofEngineeringandTechnology,MichaelFaraday House,SixHillsWay,Stevenage,Herts,SG12AY,UnitedKingdom. Whiletheauthorandpublisherbelievethattheinformationandguidancegiveninthisworkarecorrect,allparties mustrelyupontheirownskillandjudgementwhenmakinguseofthem.Neithertheauthornorpublisherassumes anyliabilitytoanyoneforanylossordamagecausedbyanyerrororomissioninthework,whethersuchanerroror omissionistheresultofnegligenceoranyothercause.Anyandallsuchliabilityisdisclaimed. 10 9 8 7 6 5 4 3 2 1 ISBN978-1-61353-003-0(hardback) ISBN978-1-61353-025-2(PDF) TypesetinIndiabyMPSLtd PrintedintheUSAbySheridanBooks,Inc. Lyalinov-5220034 lyal5220034˙fm October18,2012 15:54 Contents Preface xi Introduction 1 Generalandhistoricalremarks 1 Descriptionofthecontent 3 1 Fundamentals 5 1.1 Equationsforacousticandelectromagneticwaves 5 1.1.1 Acousticwaves 5 1.1.2 Electromagneticwaves 7 1.2 Boundaryconditions 9 1.3 Edgeandradiationconditions 11 1.3.1 VicinityoftheedgeandMeixner’scondition 11 1.3.2 OnthebehaviorofsolutionstotheHelmholtzequationinthe angulardomainasr→0 12 1.3.3 Radiationconditions:Formulationoftheproblem 13 1.3.4 Thelimiting-absorptionprinciple 14 1.4 Integraltransformations 16 1.4.1 Fouriertransformandtheconvolutiontheorem 16 1.4.2 TheSommerfeldintegral 17 1.4.3 Malyuzhinets’stheorem:Sommerfeld–Malyuzhinets(SM)transform 18 1.4.4 Kontorovich–Lebedev(KL)transformandits connectionwiththeSommerfeldintegral 22 1.4.5 Watson–Besselintegral 24 1.5 Malyuzhinets’ssolutionfortheimpedancewedgediffractionproblem 26 1.5.1 FunctionalequationsfortheMalyuzhinetsproblem 26 1.5.2 ThemultiplicationprincipleandtheauxiliarysolutionΨ (z) 0 tothefunctionalequations(1.104) 28 v Lyalinov-5220034 lyal5220034˙fm October18,2012 15:54 vi Contents 1.5.3 TheMalyuzhinetsfunctionψΦ(z)anditsbasicproperties 30 1.5.4 Examinationof(d/dz)lnψΦ(z) 30 1.5.5 TheMalyuzhinetsfunctionψΦ(z) 32 1.5.6 CompletionoftheconstructionofΨ (z)andofs(z) 34 0 1.5.7 Far-fieldanalysisoftheexactsolution 35 1.6 TheoryofMalyuzhinetsfunctionalequations foroneunknownfunction 38 1.6.1 GeneralMalyuzhinetsequations 38 1.6.2 SolutiontothehomogeneousMalyuzhinetsequations 39 1.6.3 SolutiontotheinhomogeneousMalyuzhinetsequations 40 1.6.4 ModifiedFouriertransformandS-integrals 41 1.6.5 ThedirectapplicationofS-integrals 42 2 Diffraction of a skew-incident plane electromagnetic wave by a wedge with axially anisotropic impedance faces 45 2.1 Introduction 45 2.2 Statementoftheproblemanduniqueness 46 2.2.1 Statementoftheproblem 46 2.2.2 Onuniquenessofasolution 48 2.3 Sommerfeldintegralandfunctionalequations 51 2.4 Afunctionaldifferenceequationofhigherorder 53 2.4.1 Adifferenceequationforonespectrum 53 2.4.2 ThegeneralizedMalyuzhinetsfunctionχΦ(α) 54 2.4.3 Simplifyingthefunctionaldifferenceequationofhigherorder 55 2.5 Second-orderfunctionaldifferenceequationandFredholm integralequationofthesecondkind 56 2.5.1 Anintegralequivalenttothedifferenceequation 56 ± 2.5.2 DeterminingtheconstantsC 57 1(cid:6) 2.5.3 Fredholmintegralequationofthesecondkind 58 2.6 Uniformasymptoticsolution 58 2.6.1 Polesandresidues 58 2.6.2 First-orderuniformasymptotics 60 2.7 Numericalresults 62 2.7.1 Numericalcomputationofthespectra 62 2.7.2 Examples 63 2.8 Appendix:ComputationofthegeneralizedMalyuzhinetsfunction 64 2.8.1 Numericalintegration 64 2.8.2 Seriesrepresentation 67 Lyalinov-5220034 lyal5220034˙fm October18,2012 15:54 Contents vii 3 Scattering of waves from an electric dipole over an impedance wedge 69 3.1 Formulationoftheproblemandplane-waveexpansion oftheincidentfield 69 3.1.1 Statementoftheproblem 69 3.1.2 TheHertzvectorandplane-waveexpansionoftheincidentfield 71 3.2 Theintegralrepresentationofthetotalfield 74 3.2.1 Integralformulation 74 3.2.2 FormulationoftheproblemforU(r,ϕ,α,β) 74 3.2.3 Representationforthespectralfunctions 76 3.3 Deformationofthecontoursofintegrationandthe geometrical-optics(GO)field 77 3.3.1 Saddlepoints,polarsingularities,andresidues 77 3.3.2 Branchcutsforauxiliaryangles 79 3.3.3 Thegeometrical-opticsfield 80 3.4 Thediffractedwavefromtheedgeofthewedge 82 3.4.1 Nonuniformexpression 82 3.4.2 TheUATformulation 83 3.5 Expressionsforsurfacewaves 85 3.5.1 Surfacewavesexciteddirectlybythedipole 85 3.5.2 Surfacewavesexcitedattheedgebyanincidentspacewave 86 3.6 Numericalresults 87 3.7 Appendices 89 3.7.1 AppendixA.Multidimensionalsaddle-pointmethod 89 3.7.2 AppendixB.Thereciprocityprinciple 92 4 Diffraction of a TM surface wave by an angular break of an impedance sheet 95 4.1 Formulationoftheproblem 95 4.2 Functionalequationsandreductiontointegralequations 97 4.2.1 Reductiontoasecond-orderfunctionalequation 98 4.2.2 Anintegralequationofthesecondkind 100 4.3 Analyticcontinuationofthespectralfunctionsand scatteringdiagram 101 4.3.1 Scatteringdiagram 102 4.3.2 Reflectedandtransmittedsurfacewaves 103 4.4 Discussionofuniqueness 104 Lyalinov-5220034 lyal5220034˙fm October18,2012 15:54 viii Contents 5 Acoustic scattering of a plane wave by a circular impedance cone 109 5.1 Formulationoftheproblemanduniqueness 109 5.1.1 Formulationoftheproblem 109 5.1.2 Onuniquenessoftheclassicalsolution 111 5.2 Kontorovich–Lebedev(KL)transformandincomplete separationofvariables 113 5.2.1 Integralrepresentationofthesolution 113 5.2.2 Formulationoftheproblemforthespectralfunctionuν 114 5.3 Theboundaryvalueproblemforthespectralfunctionu (ω,ω ) 117 ν 0 5.3.1 Separationoftheangularvariablesforthecircularcone 119 5.3.2 Studyoftheintegralequationfor R(ν,n) 120 5.4 DiffractioncoefficientintheoasisMforanarrowcone 122 5.4.1 Problemsfortheleadingtermsandforthefirstcorrections 124 5.4.2 CalculationofV and B 126 1 2j 5.4.3 Basicformulaforthediffractioncoefficientofthe sphericalwavefromthevertexofanarrowcone 128 5.5 NumericalcalculationofthediffractioncoefficientintheoasisM 130 5.5.1 Numericalaspects 130 5.5.2 Aperturbationseriesfor|η|(cid:3)1 131 5.5.3 Examples 132 5.6 Sommerfeld–Malyuzhinetstransformandanalyticcontinuation 133 5.6.1 AnalyticpropertiesofΦ˜(α,ω,ω )andΦ(α,ω,ω ) 135 0 0 5.6.2 ProblemsfortheSommerfeldtransformants 136 5.6.3 Thesingularitycorrespondingtothewavereflected fromtheconicalsurface 137 5.7 Thereflectedwave 139 5.8 Scatteringdiagramofthesphericalwavefromthevertex 140 5.9 Surfacewaveataxialincidence 142 5.9.1 Raysolutionforthesurfacewave 142 5.9.2 SingularitiesoftheSommerfeldtransformants correspondingtothesurfacewave 143 5.9.3 Asymptoticevaluationofthesurfacewave 145 5.10 Uniformasymptoticsofthefarfieldandthe paraboliccylinderfunctions 147 5.11 Appendices 150 5.11.1 AppendixA 150 5.11.2 AppendixB.Reductionofintegrals 151 5.11.3 AppendixC.DerivationoftheconstantC 153 0 Lyalinov-5220034 lyal5220034˙fm October18,2012 15:54 Contents ix 6 Electromagnetic wave scattering by a circular impedance cone 155 6.1 FormulationandreductiontotheproblemfortheDebyepotentials 155 6.1.1 Thefar-fieldpattern 158 6.1.2 TheDebyepotentials 159 6.1.3 BoundaryconditionsfortheDebyepotentials 161 6.2 Kontorovich–Lebedev(KL)integralsandspectralfunctions 161 6.2.1 KLintegralrepresentations 161 6.2.2 Propertiesofthespectralfunctions 163 6.2.3 Boundaryconditionsforthespectralfunctions 164 6.2.4 Verificationoftheboundaryandotherconditions 166 6.2.5 Diffractioncoefficients 168 6.3 Separationofangularvariablesandreductionto functional-difference(FD)equations 170 6.4 FredholmintegralequationsfortheFouriercoefficients 172 6.4.1 Reductiontointegralequations 172 6.4.2 CommentsontheFredholmpropertyandunique solvabilityoftheintegralequations 175 6.5 ElectromagneticdiffractioncoefficientsinM’andnumericalresults 175 6.5.1 NumericalSolution 176 6.5.2 Numericalexamples 177 6.6 SommerfeldandWatson–Bessel(WB)integralrepresentations 179 6.6.1 Sommerfeldintegralrepresentations 180 6.6.2 RegularitydomainsfortheSommerfeldtransformants 182 6.6.3 DiffractioncoefficientsandSommerefeldtransformants 183 6.7 Thediffractioncoefficientsoutsidetheoasisasω ∈ M” 185 6.8 ProblemsfortheSommerfeldtransformantsand somecomplexsingularities 187 6.8.1 ProblemsfortheSommerfeldtransformants 187 6.8.2 LocalbehavioroftheSommerfeldtransformants nearcomplexsingularities 189 6.9 AsymptoticsoftheSommerfeldintegralsandthe electromagneticsurfacewaves 191 6.9.1 DerivationofthefunctionalsC (n) 193 0u 6.9.2 Somecommentsontheasymptoticsuniformwithrespect tothedirectionofobservation 195 7 Epilogue 197 References 199 Index 213

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.