NanoScience and Technology NanoScience and Technology SeriesEditors: P.Avouris B.Bhushan D.Bimberg K.vonKlitzing H.Sakaki R.Wiesendanger TheseriesNanoScienceandTechnologyisfocusedonthefascinatingnano-world,meso- scopicphysics,analysiswithatomicresolution,nanoandquantum-effectdevices,nano- mechanicsandatomic-scaleprocesses.Allthebasicaspectsandtechnology-orientedde- velopmentsinthisemergingdisciplinearecoveredbycomprehensiveandtimelybooks. Theseriesconstitutesasurveyoftherelevantspecialtopics,whicharepresentedbylea- dingexpertsinthefield.Thesebookswillappealtoresearchers,engineers,andadvanced students. PleaseviewavailabletitlesinNanoScienceandTechnologyonserieshomepage http://www.springer.com/series/3705/ Bharat Bhushan Editor Scanning Probe Microscopy in Nanoscience and Nanotechnology 3 With 419 Figures 123 Editor ProfessorBharatBhushan OhioStateUniversity 2 NanoprobeLaboratoryforBio-andNanotechnologyandBiomimetics(NLB ) Columbus, Ohio USA SeriesEditors: ProfessorDr.PhaedonAvouris ProfessorDr.,Dres.h.c.KlausvonKlitzing IBMResearchDivision Max-Planck-Institut NanometerScaleScience&Technology fu¨rFestko¨rperforschung ThomasJ.WatsonResearchCenter Stuttgart YorktownHeights,NY Germany USA ProfessorHiroyukiSakaki ProfessorDr.BharatBhushan UniversityofTokyo OhioStateUniversity InstituteofIndustrialScience Nanoprobe Laboratory 4-6-1Komaba,Meguro-ku for Bio- and Nanotechnology Tokyo153-8505,Japan and Biomimetics ( NLB2) Columbus,Ohio ProfessorDr.RolandWiesendanger USA Institutfu¨rAngewandtePhysik Universita¨tHamburg ProfessorDr.DieterBimberg Hamburg TUBerlin,Fakuta¨tMathematik/ Germany Naturwissenschaften Institutfu¨rFestko¨rperphyisk Berlin Germany NanoScienceandTechnology ISSN1434-4904 ISBN978-3-642-25413-0 ISBN978-3-642-25414-7 (eBook) DOI10.1007/978-3-642-25414-7 Springer Heidelberg New York Dordrecht London LibraryofCongressControlNumber:(cid:147)2009934500 © Springer-Verlag Berlin Heidelberg 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface The emergence and proliferation of proximal probes, in particular tip-based microscopies, has found applications in a large number of fields of scientific and industrialinterest.Theseallowinvestigationsdowntotheatomicscale.Therecent focusonnanotechnologyhasmadeprobe-basedmethodsindispensible.Thepresent editorcoeditedwithProf.H.Fuchs13volumesonappliedscanningprobemethods (SPM) from2004 to 2009.These volumeshave provideda timely comprehensive overviewofSPMapplications. The success of the Springer Series Applied Scanning Probe Methods and the rapidly expanding activities in scanning probe development and applications in nanoscienceandnanotechnologyworldwidemakeitanaturalsteptocollectfurther specific results in the fields of development of scanning probe microscopy tech- niques, characterization, and industrial applications, particularly in nanoscience, nanotechnology,andbiomimetics.In2010,theeditorlaunchedaseriesofvolumes on Scanning Probe Microscopy in Nanoscience and Nanotechnology. This third volume provides insight into the recent work by leading specialists in their respectivefields. Thisvolumeintroducesmanytechnicalconceptsandimprovementsofexisting scanning probe techniques and covers a broad and impressive spectrum of recent SPM development and application in many fields of technology, biology, and medicine. The chapters are broken down under three major headings: Scanning ProbeMicroscopyTechniques,Characterization,andIndustrialApplications.After introducingnewdevelopmentsinscanningprobemicroscopy,characterizationdata in variousapplicationsof scientific andtechnologicalinterestarepresented.Next, chaptersonvariousindustrialapplicationsarepresented.Characterizationdataand industrial applications include studies of biological materials, nanostructures, and nanotubes. The chaptersare written by leading researchersand applicationscientists from allovertheworldandfromvariousindustriestoprovideabroaderperspective.The field is progressing so fast that there is a need for a set of volumes every 12–18 monthstocapturethelatestdevelopments. v vi Preface We gratefully acknowledge the support of all authors representing leading scientists in academia and industry for the highly valuable contribution to this volume. We also cordially thank the series editor Claus Ascheron and his staff member Adelheid Duhm from Springer for their continued support during the publicationprocess. Wesincerelyhopethatreaderswillfindthisvolumetobescientificallystimulat- ingandrewarding. Columbus,OH,USA BharatBhushan Contents PartI ScanningProbeMicroscopyTechniques 1 Laser-AssistedScanningProbeAlloyingNanolithography (LASPAN) ................................................................... 3 LuohanPeng,HuiliangZhang,PhilipHemmer,andHong Liang 1.1 ABriefReviewofScanningProbe-BasedNanolithography....... 3 1.1.1 Introduction................................................. 3 1.1.2 Laser-AssistedProcess..................................... 4 1.1.3 StimulatedNanoalloyingandNanocrystallization........ 4 1.2 LASPANSystemConfiguration..................................... 5 1.2.1 AFMWritingatRoomTemperature....................... 5 1.2.2 LaserSystemAttachment.................................. 5 1.2.3 IntegrationofLaserandAFMSystems ................... 7 1.3 LASPANProcessesandApplications............................... 8 1.3.1 PrinciplesofLASPANProcess ............................ 8 1.3.2 OptimizationofLASPANGenericProcess ............... 9 1.3.3 LASPANinanAu-SiSystem:ACaseStudy............. 14 1.4 Conclusions........................................................... 20 References.................................................................... 20 2 CharacterizationandOptimizationofQuartzTuning Fork-BasedForceSensorsforCombinedSTM/AFM.................. 23 AndresCastellanos-Gomez,NicolásAgraït,andGabino Rubio-Bollinger 2.1 Introduction........................................................... 23 2.1.1 WhyStudytheDynamicsofQuartzTuning ForkForceSensors?........................................ 24 2.1.2 WhyDevelopNovelTips? ................................. 25 vii viii Contents 2.2 DynamicsofQuartzTuningFork-BasedForceSensors ........... 25 2.2.1 ModelingtheTuningForkDynamics ..................... 25 2.2.2 EffectiveSpringConstant.................................. 27 2.2.3 LinearityoftheRelationshipBetweenthe ForceGradientandtheResonanceFrequencyShift...... 34 2.2.4 OscillationAmplitudeCalibration......................... 36 2.3 Carbon Fiber Tips to Optimize the Performance ofTuningFork-BasedSensors....................................... 40 2.3.1 AdvantagesofCarbonFiber-BasedTipsin CombinedSTM/AFM...................................... 40 2.3.2 ElectrochemicalEtchingoftheTips....................... 43 2.3.3 PerformanceinSTM/AFMMicroscopes.................. 44 2.4 Conclusions........................................................... 50 References.................................................................... 51 3 ExploringMesoscaleContactMechanicsbyAtomicForce Microscopy.................................................................. 55 RenatoBuzio 3.1 Introduction........................................................... 56 3.1.1 FundamentalandTechnologicalRelevanceof MesoscaleContactJunctions............................... 56 3.1.2 ProbingMCMbyDepth-SensingIndentation Experiments................................................. 59 3.2 Experimentson MCM by Elastically Stiff AFM Probes:TheRoleofNanoroughness................................ 61 3.3 ExperimentsonMCMbyElastomerColloidalAFMProbes...... 63 3.3.1 FabricationofProbes....................................... 63 3.3.2 ExperimentswithAtomicallySmoothInterfaces......... 65 3.3.3 ExperimentswithRoughInterfaces ....................... 70 3.4 Conclusions........................................................... 72 References.................................................................... 73 PartII Characterization 4 AtomicForceMicroscopyforDNASNPIdentification ................ 79 UgoValbusaandVincenzoIerardi 4.1 Introduction........................................................... 79 4.2 DNAandMutSAFMImaging ...................................... 82 4.2.1 MismatchTagging.......................................... 82 4.2.2 DNA Deposition Process: Chemical EnvironmentEffects........................................ 85 4.2.3 MorphologicalCharacterizationof DNA FilamentsandMutSProteinbyAFM ..................... 87 Contents ix 4.3 DNA-MutSComplexInvestigation.................................. 91 4.3.1 ExperimentalConditionoftheFormation ofHomoduplexDNA-MutSComplexes .................. 92 4.3.2 Heteroduplexds-DNA-MutSComplexes ................. 92 4.4 Conclusions........................................................... 95 References.................................................................... 96 5 AtomicForceMicroscopyofIsolatedNanostructures: BiomolecularImaginginHydratedEnvironments–Status andFutureProspects....................................................... 99 SergioSantosandNeilH.Thomson 5.1 IntroductiontoAtomicForceMicroscopy(AFM)inBiology..... 99 5.2 Imaging Biomolecules in Liquid and Ambient DynamicAFM:AnOverview....................................... 105 5.3 Bistability,AverageandPeakForces................................ 109 5.4 ImagingBiomoleculesintheAttractiveandRepulsive Regimes............................................................... 116 5.5 TheTrueNon-contactModeofOperation.......................... 119 5.6 TheRelevanceofPeakForces....................................... 119 5.7 InstrumentStability:ReproducibleOperation...................... 121 5.8 WhatControlsHighResolutionofSoftMatterinAFM ........... 122 5.9 UnderstandingandInterpretingApparentHeightinAFM......... 124 5.10 ConclusionsandFutureProspects................................... 126 References.................................................................... 129 6 Single-MoleculeStudiesofIntegrinsbyAFM-BasedForce SpectroscopyonLivingCells.............................................. 137 RobertH.Eibl 6.1 Introduction........................................................... 138 6.1.1 PrinciplesofAFM.......................................... 145 6.1.2 IntegrinsinCellAdhesionandLeukocyteHoming....... 147 6.2 ForceSpectroscopyofLivingCells................................. 152 6.2.1 PreparationofCellsandReagentsforAFM Measurements............................................... 152 6.2.2 PlacingaCellontotheTipofaCantilever................ 154 6.2.3 ForceMeasurementsonCells.............................. 155 6.2.4 BlockingExperimentsattheSingle-BondLevel ......... 158 6.2.5 PharmacologyMeasurements.............................. 158 6.3 AFMForceMeasurementsofIntegrins............................. 158 6.3.1 IntegrinVLA-4 ............................................. 159 6.3.2 IntegrinLFA-1.............................................. 162 6.3.3 Integrin’ “ ................................................ 164 4 7 6.3.4 Integrin’ “ ................................................ 165 5 1 6.3.5 Integrin’ “ ................................................ 165 v 3 6.4 Conclusion............................................................ 166 References.................................................................... 167 x Contents 7 NanomechanicsofYeastSurfacesRevealedbyAFM................... 171 EtienneDague,AudreyBeaussart,andDavidAlsteens 7.1 Introduction........................................................... 171 7.2 PreparationofAFMSampleandTips............................... 174 7.2.1 AFMForceMeasurements................................. 174 7.2.2 SamplePreparation......................................... 176 7.2.3 TipFunctionalization....................................... 178 7.3 NanostructureandElasticityofYeastCellWall.................... 181 7.4 NanomechanicalBehavioroftheAls5pCellAdhesionProtein ... 184 7.4.1 UnfoldingBehaviorConfersToughnesstoAls5p ........ 186 7.4.2 Force-InducedAlsNanodomains.......................... 187 7.5 Conclusion............................................................ 189 References.................................................................... 189 8 Recent Developments in In Situ SFM of Block Copolymers:3DVolumeStructuresandDynamics .................... 195 Markus Hund, Clemens Liedel, Larisa Tsarkova, and AlexanderBöker 8.1 Introduction........................................................... 195 8.2 In Situ SFM Imaging of Block Copolymer NanostructuresUnderAnnealing.................................... 196 8.3 QuasiInSituScanningProbeMicroscopy.......................... 202 8.3.1 InSituandExSitu.......................................... 202 8.3.2 TheQuasiInSituSetup.................................... 204 8.3.3 OperationoftheQIS-SFM................................. 206 8.3.4 QuasiInSituSolventVaporAnnealinginthe PresenceofaHighElectricField.......................... 209 8.4 Quasi In Situ Investigationof Block Copolymer AlignmentMechanisms.............................................. 211 8.4.1 AlignmentMechanismofaLamellaForming ABCTriblockCopolymer.................................. 212 8.4.2 DefectAnnihilationinaLamellaForming ABCTriblockCopolymer.................................. 216 8.4.3 AlignmentMechanismofaCylinderForming ABCTriblockCopolymer.................................. 219 8.5 InSituSFMImagingAfterSuccessivePlasmaEtching fortheStructureReconstruction..................................... 223 8.6 ConclusionandPerspective.......................................... 229 References.................................................................... 230 9 SurfaceMorphologyandCrystallinityofPolyamides InvestigatedbyAtomicForceMicroscopy............................... 235 TamaraElzein,MauriceBrogly,andSophieBistac 9.1 Introduction........................................................... 235 9.2 ExperimentalPart .................................................... 238 9.2.1 FunctionalizedSubstrates.................................. 238