NanoScience and Technology NanoScience and Technology SeriesEditors: P.Avouris B.Bhushan D.Bimberg K.vonKlitzing H.Sakaki R.Wiesendanger TheseriesNanoScienceandTechnologyisfocusedonthefascinatingnano-world,meso- scopicphysics,analysiswithatomicresolution,nanoandquantum-effectdevices,nano- mechanicsandatomic-scaleprocesses.Allthebasicaspectsandtechnology-orientedde- velopmentsinthisemergingdisciplinearecoveredbycomprehensiveandtimelybooks. Theseriesconstitutesasurveyoftherelevantspecialtopics,whicharepresentedbylea- dingexpertsinthefield.Thesebookswillappealtoresearchers,engineers,andadvanced students. PleaseviewavailabletitlesinNanoScienceandTechnologyonserieshomepage http://www.springer.com/series/3705/ Bharat Bhushan (Editor) Scanning Probe Microscopy in Nanoscience and Nanotechnology 2 With 453 Figures 123 Editor ProfessorBharatBhushan OhioStateUniversity 2 NanoprobeLaboratoryforBio-andNanotechnologyandBiomimetics(NLB ) 201,West19thAvenue Columbus,OH43210-1142,USA E-mail:[email protected] SeriesEditors: ProfessorDr.PhaedonAvouris ProfessorDr.,Dres.h.c.KlausvonKlitzing IBMResearchDivision Max-Planck-Institut NanometerScaleScience&Technology fu¨rFestko¨rperforschung ThomasJ.WatsonResearchCenter Heisenbergstr.1 P.O.Box218 70569Stuttgart,Germany YorktownHeights,NY10598,USA ProfessorHiroyukiSakaki ProfessorDr.BharatBhushan UniversityofTokyo OhioStateUniversity InstituteofIndustrialScience NanotribologyLaboratory 4-6-1Komaba,Meguro-ku forInformationStorage Tokyo153-8505,Japan andMEMS/NEMS(NLIM) Suite255,AckermanRoad650 ProfessorDr.RolandWiesendanger Columbus,Ohio43210,USA Institutfu¨rAngewandtePhysik Universita¨tHamburg ProfessorDr.DieterBimberg Jungiusstr.11 TUBerlin,Fakuta¨tMathematik/ 20355Hamburg,Germany Naturwissenschaften Institutfu¨rFestko¨rperphyisk Hardenbergstr.36 10623Berlin,Germany NanoScienceandTechnology ISSN1434-4904 ISBN978-3-642-10496-1 e-ISBN978-3-642-10497-8 DOI10.1007/978-3-642-10497-8 Springer Heidelberg Dordrecht London New York ©Springer-VerlagBerlinHeidelberg2011 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublicationor partsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9,1965,in itscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violationsareliableto prosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelawsand regulationsandthereforefreeforgeneraluse. Cover design: eStudio Calamar Steinen Printed on acid-free paper Springer is part of Springer Science+Business Media (www.spinger.com) Foreword Natureisthebestexampleofasystemfunctioningonthe nanometer scale, where the involved materials, energy consumption, and data handling are optimized. Open- ing the doors to the nanoworld, the emergence of the scanning tunneling microscope in 1982 and the atomic force microscope in 1986 led to a shift of paradigm in the understanding and perception of matter at its most fundamentallevel.As a consequence,new revolu- tionary concepts stimulated a number of new technolo- gies. The current volume of Scanning Probe Methods in Nanoscience and Nanotechnology shows that these methodsare still makinga tremendousimpacton many disciplines that range from fundamental physics and chemistry through information technology, spintronics, quantum computing, and molecularelectronics,allthe wayto life sciences. Indeed,morethan6,000AFM- relatedpaperswerepublishedin2008alone,bringingthetotaltomorethan70,000 since its invention, according to the Web of Science, and the STM has inspired a totalof20,000papers.Therearealso morethan500patentsrelatedtothe various formsofscanningprobemicroscopes.Commercializationofthetechnologystarted attheendofthe 1980s,andapproximately12,000commercialsystemshavebeen soldsofartocustomersinareasasdiverseasfundamentalresearch,thecarindustry, andeventhefashionindustry.Therearealsoasignificantnumberofhome-builtsys- temsinoperation.Some60–80companiesareinvolvedinmanufacturingSPMand relatedinstruments.Indeed,noteventheskyseemstobethelimitforAFMtechnol- ogy.TheRosettamissiontocomet67PlaunchedbytheEuropeanSpaceAgencyin 2004includesanAFMinitsMicro-ImagingDustAnalysisSystem(MIDAS)instru- ment. The goalof this mission, which is expectedto touchdownon 67P in 2014, istoanalyzeparticlesizedistributionsincometmaterial.NASA’sPhoenixmission to Mars in 2008 included an AFM for similar studies (collaboration between the UniversitiesofNeuchaˆtelandBasel,aswellaswithNanosurfGmbH). Whatdoesthefuturehold?Nanotechnologyisstilldominatedtoacertainextent by the top-down approach where miniaturization plays a crucial role. However, thereisaworldwideeffortofmeetingthebottom-upapproachofself-assemblyand v vi Foreword self-organization that has been so successfully implemented in the natural world. Researchers are trying to unravel nature’s secrets on a nanometer scale to create a new generation of materials, devices, and systems that will spectacularly out- perform those we have today in information technology, medicine and biology, environmentaltechnologies,the energyindustry,andbeyond.As we better under- standhownatureisdoing“things”onafundamentallevel,achievementslikeclean chemistryorcleanprocessingwillemergealongwithhowtohandlewasteproblems and not polluting the environment. New smart materials, hybrid or heterostruc- tured, as well as carbon nanotubes, a variety of nanowires or graphene could be the ingredientsfor novelenergy-savingdevices. In order to understand the whole functionality of a cell, Systems Biology Institutes have been established with the hope of artificially synthesizing a cell in a bottom-up approach. Nanomedicine, including noninvasivediagnostics, will be more and more on the agenda, fighting diseasesonthemolecularlevel,e.g.,newkindsofdrug-deliverysystemsbasedon peptidesorblockcopolymernanocontainersareinvestigatedaspossiblecarriersto targetcarcinogeniccells.Biologyisdrivenbychemistry;however,thescaffold,the gears, the knots and bolts, e.g., in cell membranes, is nanomechanics, a template thatnaturehasorchestratedduringeonsofevolutionandworthwhiletryingtocopy andimplementinnovelnanodevices. However, to keep this worldwide effort alive, the interdisciplinary structure of nanorequiresa new breedofscientists educatedin allscience disciplineswith no languagebarriers,readytomakeanimpactonalltheglobalchallengesaheadwhere nanotechnologycan be applied.1 Scanningprobemicroscopyandrelated methods willstillplayanimportantroleinmanyoftheseinvestigations,helpingtocapitalize onthisfundamentalknowledge,beneficialforfuturetechnologiesandtomankind. Prof.ChristophGerber (Co-invertorofAFM) (FormerlyatIBMZurichResearchLaboratory) NationalCompetenceCenterforResearchinNanoscaleScience(NCCR) InstituteforPhysics UniversityofBasel Switzerland 1Nano-curriculumattheUniversityofBasel,http://www.nccr.nano.org/NCCR/study. Preface Theemergenceandproliferationofproximalprobes,inparticulartip-basedmicro- scopies, have found applications in a large number of fields of scientific and industrialinterest.Theseallowinvestigationsdowntotheatomicscale.Therecent focusonnanotechnologyhasmadeprobe-basedmethodsindispensible.Thepresent editorcoeditedwithProf.H.Fuchs13volumesonappliedscanningprobemethods (SPM) from 2004to 2009.These volumeshave provideda timely comprehensive overviewofSPMapplications. The success of the Springer Series Applied Scanning Probe Methods and the rapidly expanding activities in scanning probe development and applications in nanoscienceandnanotechnologyworldwidemakesitanaturalsteptocollectfurther specific results in the fields of development of scanning probe microscopy tech- niques, characterization, and industrial applications, particularly in nanoscience, nanotechnology,andbiomimetics.In2010,theeditorlaunchedaseriesofvolumes on ScanningProbeMicroscopyin NanoscienceandNanotechnology.Thissecond volumeprovidesinsightintotherecentworkofleadingspecialistsintheirrespec- tive fields. The focus in this volume is on the fundamentaldevelopmentsin SPM techniques. This volume introduces many technical concepts and improvements of exist- ing scanning probe techniques and covers a broad and impressive spectrum of recent SPM development and application in many fields of technology, biology, andmedicine.Thechaptersaregivenunderthreemajorheadings:ScanningProbe MicroscopyTechniques,Characterization,andIndustrialApplications.Afterintro- ducing new developments in scanning probe microscopy, characterization data in variousapplicationsofscientificandtechnologicalinterestispresented.Next,chap- ters on various industrial applications are presented. Characterization data and industrial applications include studies of biological materials, nanostructures, and nanotubes. The chapters are written by leading researchersand applicationscientists from allovertheworldandfromvariousindustriestoprovideabroaderperspective.The field is progressing so fast that there is a need for a set of volumes every 12–18 monthstocapturethelatestdevelopments. Wegratefullyacknowledgethesupportofallauthorsrepresentingleadingscien- tists in academiaand industry forthe highlyvaluable contributionto this volume. vii viii Preface We also cordially thank the series editor Claus Ascheron and his staff member Adelheid Duhm from Springer for their continued support during the publication process. We sincerely hope that readers find this volume to be scientifically stimulating andrewarding. Columbus,OH,USA BharatBhushan September2010 Contents PartI ScanningProbeMicroscopyTechniques 1 Time-ResolvedTapping-ModeAtomicForceMicroscopy............... 3 AliFatihSariogluandOlavSolgaard 1.1 Introduction............................................................. 3 1.2 Tip–SampleInteractionsinTM-AFM................................. 5 1.2.1 InteractionForcesinTM-AFM.............................. 5 1.2.2 Cantilever Dynamics and Mechanical BandwidthinTM-AFM...................................... 6 1.3 AFM Probes with Integrated Interferometric HighBandwidthForceSensors........................................ 8 1.3.1 Model ......................................................... 9 1.3.2 InterferometricGratingSensor............................... 13 1.3.3 SensorMechanicalResponse&TemporalResolution ..... 19 1.3.4 Fabrication.................................................... 21 1.3.5 DetectionSchemes ........................................... 23 1.3.6 CharacterizationandCalibration............................. 26 1.3.7 Time-ResolvedForceMeasurements........................ 27 1.4 ImagingApplications .................................................. 30 1.4.1 NanomechanicalMaterialMapping ......................... 31 1.4.2 Imagingof MolecularStructuresin Self AssembledMonolayers ...................................... 32 1.4.3 ImagingMicrophaseSeperation inTriblockCopolymer....................................... 33 1.5 Conclusion.............................................................. 34 References...................................................................... 35 2 SmallAmplitudeAtomicForceSpectroscopy............................. 39 Sissi de Beer, Dirk van den Ende, Daniel Ebeling, andFriederMugele 2.1 Introduction............................................................. 39 2.2 SmallAmplitudeSpectroscopy........................................ 42 2.2.1 ActuationTechniques ........................................ 43 2.2.2 EffectFrequencyDependentDamping...................... 53 ix x Contents 2.3 Summary................................................................ 54 References...................................................................... 57 3 CombiningScanningProbeMicroscopyandTransmission ElectronMicroscopy ......................................................... 59 Alexandra Nafari, Johan Angenete, Krister Svensson, AnkeSanz-Velasco,andHa˚kanOlin 3.1 Introduction............................................................. 60 3.1.1 WhyCombineSPMandTEM?.............................. 60 3.2 SomeAspectsofTEMInstrumentation............................... 62 3.3 IncorporatinganSTMInsideaTEMInstrument..................... 63 3.3.1 ApplicationsofTEMSTM ................................... 66 3.4 IncorporatinganAFMInsideaTEMInstrument..................... 75 3.4.1 OpticalForceDetectionSystems............................ 76 3.4.2 Non-opticalForceDetectionSystems....................... 77 3.4.3 TEMAFMApplications...................................... 80 3.5 CombinedTEMandSPMSamplePreparation....................... 84 3.5.1 NanowiresandNanoparticles................................ 85 3.5.2 AProperElectricalContactforTEMSPM.................. 87 3.5.3 LamellaSamples.............................................. 90 3.5.4 ElectronBeamIrradiationEffects ........................... 90 3.6 Conclusion.............................................................. 92 References...................................................................... 93 4 Scanning Probe Microscopyand Grazing-Incidence Small-Angle Scattering as Complementary Tools fortheInvestigationofPolymerFilmsandSurfaces .....................101 PeterMu¨ller-BuschbaumandVolkerKo¨rstgens 4.1 Introduction.............................................................101 4.2 StatisticalAnalysisofSPMData......................................103 4.3 IntroductiontoGrazing-IncidenceSmall-AngleScattering..........109 4.4 ComparisonofRealandReciprocalSpaceData .....................113 4.5 ComplementaryandInSituExperiments.............................117 4.6 CombinedInSituGISAXSandSPMMeasurements................127 4.7 SummaryandOutlook.................................................128 References......................................................................129 5 Near-FieldMicrowaveMicroscopyforNanoscience andNanotechnology..........................................................135 Kiejin Lee, Harutyun Melikyan, Arsen Babajanyan, andBarryFriedman 5.1 PrinciplesofMicrowaveMicroscope .................................135 5.1.1 Introduction...................................................135 5.1.2 Near-fieldInteraction.........................................136 5.1.3 MicrowaveFrequencies......................................138