SAR Retracking in the Arctic Development of a year round Arctic SAR retracker system Ann-Theres Schulz s i s e h T e c n e i c S f o r e t s a M Astrodynamics and Space Missions SAR Retracking in the Arctic Development of a year round Arctic SAR retracker system by Ann-Theres Schulz ToobtainthedegreeofMasterofScience inSpaceflightatDelftUniversityofTechnology, tobedefendedpubliclyon15April2016at9.00. Studentnumber: 4124251 Thesiscommittee: Ir. M.C.Naeije TUDelft,supervisor Prof.dr.ir. P.N.A.M.Visser TUDelft Dr.ir. E.J.O.Schrama TUDelft Dr.ir. D.C.Slobbe TUDelft Anelectronicversionofthisthesisisavailableathttp://repository.tudelft.nl/. CoverPicture: Artist’simpressionofCryoSat-2. ImageCourtesy: EuropeanSpaceAgency. Copyright(cid:13)c AstrodynamicsandSpaceMissions(AS) Allrightsreserved. Abstract Developments in satellite altimetry over the past years lead to a high resolution altimeter: Synthetic ApertureRadar(SAR).ThemajorimprovementofSARoverpulse-limitedaltimetersistheincreased along-track resolution. Since CryoSat-2 is the first satellite to carry a SAR altimeter it serves as a steppingstonetoimprovetheperformanceofSAR.Givenitspolarorbit,CryoSat-2providesfrequent highresolutionmeasurementsoftheArcticregionoverchangingterrain(e.g. ice,waterandseaice). Due to the high seasonality in the Arctic, it is of essence that the quality of SAR measurements is not decreased with varying topography. Therefore, the purpose of this research is to improve SAR waveform retracking in the Arctic region by analyzing different retrackers on their performance in varying(Arctic)conditionsandcombinethepositivebehaviorintooneretrackersystem. The research is separated into three parts, first the SAR waveforms are classified, secondly the re- trackers’performanceisevaluatedandfinally,thecombinedretrackersystemisdiscussed. The waveforms are classified according to open ocean, sea ice and leads based on their statistical behavior and the number of major peaks. Leads are waveforms caused by fractures in the sea ice resulting in water presence in the ridges. Throughout 2011, the number of waveforms per terrain showsahighseasonalitywithalargeamountofseaiceinJanuarytoApril,highleadspercentagein MaytoJuneandfinally,alargenumberofoceanobservationsinSeptembertoOctober. Basedontheaccuracyandprecisionperformance,fourretrackersareevaluatedinordertodetermine aretrackersystem: theempiricalprimarypeakCenterofGravity(COG),theprimarypeakthreshold and the ESA retracker as well as the physical SAMOSA3 retracker. Empirical retrackers determine the retracking point depending on the waveform statistics, while physical retrackers take the surface propertiesintoaccount. TheaccuracyisevaluatedusingcoastaltidegaugesandEnvisatcrossoversforoceanwaveformsonly, asthisdataisnotrepresentativeforleadsorseaice. ForthemajorityofthemonthsSAMOSA3hasthe highestaccuracyforoceanwaveformsasitsphysicalfullanalyticapproachprovidesagoodfitforthe predictable ocean waveforms. The primary peak retrackers have the best precision performance for irregularwaveformslikeseaiceandleads,astheyarelesssensitivetonoisesinceonlythemaximum peakisanalyzed. Theyearroundretrackersystemincludesthemostaccurateretrackerforoceanwaveformspermonth and the best precision retracker for sea ice and leads. When combining different retrackers the bias Master of Science Thesis Ann-Theres Schulz ii causedbydifferentalgorithmsneedstoberemoved. Ameanbiasstrategyisimplementedthatcom- putesthemeanoffsetbetweentworetrackerspertrackoveropenoceanandtheoffsetisthenapplied totheotherwaveformclasses. Abiasremovalapproachbasedonsignificantwaveheightdependency is also applied using least squares to compute the offset per waveform class per track. Furthermore, two hybrid models of these strategies are implemented. The first hybrid model uses the significant waveheightmodelforoceanobservationsandthemeanbiasmethodforleadsandseaicetoremove the offset. Within the second hybrid model, the ocean and leads bias is removed by the significant waveheightapproach,whiletheoffsetintheseaiceclassismitigatedwiththemeanbiasmethod. The retracker system with the primary peak center of gravity as a base retracker and a mean bias re- movalapproachperformedbestasithasaprecisionimprovementof47.1%withrespecttoretracking allwaveformclasseswiththeprimarypeakCOGwhileincludingthelargestdatasetforprecisionand accuracydetermination. Ann-Theres Schulz Master of Science Thesis Table of Contents Glossary xi ListofAcronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi ListofSymbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii Preface xv 1 Introduction 1 2 CryoSat-2 3 2-1 Mission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2-2 AltimeterOperationalModes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Radar Altimetry 7 3-1 PrincipleofRadarAltimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3-2 GeophysicalandRangeCorrections . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3-3 SyntheticApertureRadar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3-4 DataAcquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4 Waveform Classification 17 4-1 Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4-1-1 ClassificationParameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4-1-2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4-2 OpenOcean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4-3 Leads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4-4 SeaIce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4-5 Seasonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Master of Science Thesis Ann-Theres Schulz iv Table of Contents 5 Retrackers 27 5-1 PrimaryPeakRetrackers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5-1-1 CenterofGravityRetracker . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5-1-2 ThresholdRetracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5-2 SAMOSARetracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5-3 CryoSat-2Retracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 6 Retracker Performance 35 6-1 Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6-2 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6-2-1 TideGaugeData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6-2-2 EnvisatData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6-2-3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 6-3 OptimalRetrackerSelection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 7 Retracker System 51 7-1 BiasRemovalStrategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 7-1-1 MeanDifferenceBias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 7-1-2 SWHDependencyBias. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 7-1-3 HybridModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 7-1-4 HybridModelV.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 7-2 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 7-3 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 7-3-1 RetrackerSystemProcessing . . . . . . . . . . . . . . . . . . . . . . . . . . 57 7-3-2 Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 7-3-3 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 8 Conclusions and Recommendations 67 8-1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 8-2 Recommendations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 A Reference Ellipsoid Adjustment 73 B SAMOSA2 Performance 75 Bibliography 77 Ann-Theres Schulz Master of Science Thesis List of Figures 2-1 CryoSat-2modemaskfortheArcticfrom16/04/2011to15/05/2011[8]. SARIN DEG indicatesdegradedSARInmode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3-1 Thegeometryofaltimetryobservations[9]. . . . . . . . . . . . . . . . . . . . . . . 8 3-2 The geophysical corrections that are applied to the sea surface measurement: Geoid height,tidalheight,atmosphericpressureloadinganddynamiceffectsofgeostrophic oceancurrents[10]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3-3 Errorbudgetforpastaltimetermissions[9]. . . . . . . . . . . . . . . . . . . . . . . 9 3-4 ThegeometryofSAR.Left: Thealong-trackbeamsemittedbythealtimeterreaching thesurface. Right: ThefootprintofSAR[1]. . . . . . . . . . . . . . . . . . . . . . 12 3-5 Top panel: The closed burst method is shown as used in CryoSat-2. Bottom panel: Theopenburstmethodwiththeindividualtransmittedpulsesingreyandthereceived onesinpink[21]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3-6 SAR precision (blue) in cm shown as a function of significant wave height. As a reference,theprecisionofpulselimitedaltimeters(black)isindicated[26]. . . . . . 15 3-7 FlowchartforthedataprocessingofESAlevel1bBaselineBmeasurements. . . . . 16 4-1 TheSARwaveformhasasteeppeakfollowedbyaslowlydecayingtrailingedge[1]. 18 4-2 Differentwaveformclassesbasedonpulselimitedaltimetry[31]. . . . . . . . . . . . 18 4-3 Oceanobservation. Left: Arcticoceannexttoanicesheet[38]. Right: Anopenocean waveformwithitscomputedparameters. . . . . . . . . . . . . . . . . . . . . . . . . 22 4-4 Leadobservation. Left: LeadintheArcticocean[38]. Right: Aleadwaveformwith itscomputedwaveformparameters. . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4-5 Seaiceobservation. Left: SeaiceintheArcticocean[38]. Right: Aseaicewaveform withitscomputedparameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4-6 Sea ice concentration for the Kara Sea for 2011. Top row, left to right: January- March,secondrow: April-June,thirdrow: July-Septemberandbottomrow: October- December. Thedataistakenfrom[39]. . . . . . . . . . . . . . . . . . . . . . . . . 24 4-7 The percentage of waveforms per class on a monthly basis for 2011. This plot is based on Level 1b data using the classification parameters described in this section. Unclassifiedwaveformsarenotconsideredinthisplot. . . . . . . . . . . . . . . . . 25 Master of Science Thesis Ann-Theres Schulz vi List of Figures 5-1 Linear interpolation scheme to determine the retracker point for the primary peak thresholdmethod[4]. Eq.(5-9)isbasedonthegeometryshownhere. . . . . . . . . 29 5-2 GeometryofPrimaryPeakRetrackers. Thebluelineshowsthewaveform, thegreen line indicates the extracted primary peak. The black dotted line shows the rectan- gle that is fitted to the primary peak. The black asterisk and red diamond show the retrackingpointoftheCOGandthresholdretracker,respectively. . . . . . . . . . . . 30 5-3 ThephysicalmeaningofthefittedCryoSat-2parametersonthewaveformasafunc- tionoftimeτ [13]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6-1 Thedefinitionofaccuracyandprecisionthatwillbeusedtoanalyseandevaluatethe retrackerperformance[48]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 6-2 Precision performance of the primary peak center of gravity and threshold retracker, SAMOSAandESAretrackerforfourdifferentwaveformclasses: ocean,leads,seaice and unclassified. The precision is determined on a monthly basis for 2011 based on itsstandarddeviation. Notethedifferentscalesoftheverticalaxis. . . . . . . . . . . 37 6-3 Precision performance of the primary peak center of gravity and threshold retracker, SAMOSA and ESA retracker. The precision is determined on a monthly basis for 2011basedonitsstandarddeviation. . . . . . . . . . . . . . . . . . . . . . . . . . . 38 6-4 Thetestregionandthetidegaugelocations. . . . . . . . . . . . . . . . . . . . . . . 39 6-5 Thetidegaugesystemgeometryovertime. MSL showsthelocalreferencetowhich 53 thetidegaugeobservationsaremeasured. ItisbasedontheMeanSeaLevelof1953 in this case. The tide gauge returns the height of the sea surface with respect to the RLR, h . The mean sea surface with respect to the TOPEX/Poseidon SSH_RLR_cor referenceellipsoidisrepresentedbyh . Finally,ζ istheheightbetweenmean MSS_DTU seasurfaceDTU13andtheRLR,MSL ,usedtocomputetheseasurfaceheightina 53 globalreferenceframe,h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 SSH_re 6-6 Footprint of the two tracks (blue) and the tide gauge locations (red). Left: Track on July1,2011. Right: TrackonNovember3,2011. . . . . . . . . . . . . . . . . . . . 42 6-7 Track analysis 01/07/2011. Left: The sea level anomaly as a function of latitude of fourretrackersusingCryoSat-2data(PPCOG,PPThreshold,SAMOSAandESAre- trackers)andEnvisatdata. Right: TimedifferencebetweenCryoSat-2measurements andEnvisatcrossoverdatapoints. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 6-8 Track analysis 03/11/2011. Left: The sea level anomaly as a function of latitude of fourretrackersusingCryoSat-2data(PPCOG,PPThreshold,SAMOSAandESAre- trackers)andEnvisatdata. Right: TimedifferencebetweenCryoSat-2measurements andEnvisatcrossoverdatapoints. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 6-9 The SLA of different waveforms classes using the four retrackers for 2011. Top left: Oceanwaveforms. ThefourCryoSat-2retrackersareindicatedbythesolidlines. The tide gauge data of the three locations is shown in the dotted lines. Top right: Lead waveforms. Bottomleft: Seaicewaveforms. Bottomright: Unclassifiedwaveforms. . 45 6-10 DifferenceinSLAcomputedoveropenoceantothetidegaugedatafortheyear2011. The blue line shows PP COG, red represents the PP threshold, the black dotted line indicatesSAMOSAandtheESAretrackerisgiveninyellow. . . . . . . . . . . . . . 46 6-11 Meansealevelanomalyforthefourretrackers(solidlines)andthethreetidegauges (dotted lines) on a monthly basis for 2011. The waveform included in this plot are openocean,leadsandseaice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6-12 TheannualsignalinthetestregionbasedonDTU131◦x1◦ resolution[36]. Left: The amplitudeoftheannualsignal. Right: Thephaseoftheannualsignal. . . . . . . . . 47 6-13 ThedifferenceinSLAbetweenSAMOSA2andSAMOSA3. Theoceanobservations ofSAMOSA3arebluedots,leadsareredsquaresandseaiceisshownbyblacktriangles. 49 Ann-Theres Schulz Master of Science Thesis
Description: