ebook img

Rules of Thumb for Mechanical Engineers. A manual of quick, accurate solutions to everyday mechanical engineering problems PDF

410 Pages·1996·17.07 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Rules of Thumb for Mechanical Engineers. A manual of quick, accurate solutions to everyday mechanical engineering problems

stnetnoC 1: Fluids, 1 Friction Factor and Darcy Equation ............................... 9 Losses in Pipe Fittings and Valves .................................. 10 Fluid Properties ........................................................ 2 Pipes in Series ................................................................. O1 Pipes in Parallel .............................................................. 10 Density, Specific Volume, Specific Weight, Specific Gravity, and Pressure .................................... 2 Open-Channel Flow 11 Surface Tension .............................................................. 2 Frictionless Open-Channel Flow .................................... 11 Vapor Pressure ................................................................ 2 Laminar Open-Channel Flow ......................................... 12 Gas and Liquid Viscosity ................................................ 3 Turbulent Open-Channel Flow ....................................... 12 Bulk Modulus ................................................................. 3 Hydraulic Jump ............................................................... 12 Compressibility ............................................................... 3 Fluid Measurements ....... 13 Units and Dimensions ..................................................... 3 Pressure and Velocity Measurements ............................. 13 Fluid Statics .............................................................. 4 Flow Rate Measurement ................................................. 14 Hot-Wire and Thin-Film Anemornetry ........................... 14 Manometers and Pressure Measurements ....................... 4 Hydraulic Pressure on Surfaces ...................................... 4 Open-Channel Flow Measurements ............................... 15 Buoyancy ........................................................................ 5 Viscosity Measurements ................................................. 15 Basic Equations ........................................................ 5 Other Topics .............................................................. 16 Continuity Equation ........................................................ 5 Unsteady Flow, Surge, and Water Hammer .................... 16 Euler's Equation ............................................................. 5 Boundary Layer Concepts .............................................. 16 Bernoulli's Equation ....................................................... 6 Lift and Drag ................................................................... 16 Energy Equation ............................................................. 6 Oceanographic Flows ..................................................... 17 Momentum Equation ...................................................... 6 2: Heat Transfer, 18 Moment-of-Momentum Equation ................................... 6 Advanced Fluid Flow Concepts .............................. 7 Dimensional Analysis and Similitude ............................ 7 Introduction .............................................................. 19 Nondimensional Parameters ........................................... 7 Conduction ................................................................ 19 Equivalent Diameter and Hydraulic Radius ................... 8 Single Wall Conduction .................................................. 19 Pipe Flow ................................................................... 8 Composite Wall Conduction ........................................... 21 The Combined Heat Transfer Coefficient ....................... 22 Diesel Cycle: Another Power Cycle ............................... 63 Critical Radius of Insulation ........................................... 22 Gas Power Cycles with Regeneration ............................. 64 Convection ................................................................. 23 Dimensionless Numbers ................................................. 23 :4 Mechanical Seals, 66 Correlations ..................................................................... 24 Typical Convection Coefficient Values .......................... 26 Radiation ................................................................... 26 Basic Mechanical Seal Components ....................... 67 Emissivity ....................................................................... 27 Sealing Points ............................................................ 67 View Factors ................................................................... 27 Mechanical Seal Classifications .............................. 68 Radiation Shields ............................................................ 29 Basic Seal Designs ..................................................... 68 Finite Element Analysis ........................................... 29 Basic Seal Arrangements ......................................... 72 Boundary Conditions ...................................................... 29 Basic Design Principles ............................................ 74 2D Analysis .................................................................... 30 Materials of Construction ....................................... 77 Transient Analysis .......................................................... 30 Desirable Design Features ...................................... 79 Evaluating Results .......................................................... 31 Equipment Considerations ...................................... 80 Heat Exchanger Classification ................................ 33 Calculating Seal Chamber Pressure ....................... 81 Types of Heat Exchangers .............................................. 33 Seal Flush Ham ........................................................ 82 Shell-and-Tube Exchangers ............................................ 36 Integral Pumping Features ...................................... 85 Tube Arrangements and Baffles ..................................... 38 Seal System Heat Balance ........................................ 87 Shell Configurations ....................................................... 40 Flow Rate Calculation .............................................. 89 Miscellaneous Data ......................................................... 42 References ............................. 91 Flow Regimes and Pressure Drop in Two-Phase Heat Transfer ........................................................ 42 Flow Regimes ................................................................. 42 :5 spmuP dna ,srosserpmoC 29 Flow Maps ...................................................................... 46 Estimating Pressure Drop ............................................... 48 Pump Fundamentals and Design ............................ 93 :3 ,scimanydomrehT 15 Pump and Head Terminology ......................................... 93 Pump Design Parameters and Formulas ......................... 93 Types of Pumps ............................................................... 94 Thermodynamic Essentials ...................................... 52 Centrifugal Pumps .......................................................... 95 Phases of a Pure Substance ............................................. 52 Net Positive Suction Head (NPSH) and Cavitation ........ 96 Thermodynamic Properties ............................................. 53 Pumping Hydrocarbons and Other Fluids ...................... 96 Determining Properties ................................................... 55 Recirculation ................................................................... 97 Types of Systems ............................................................ 56 Pumping Power and Efficiency ...................................... 97 Types of Processes .......................................................... 56 Specific Speed of Pumps ................................................ 97 The Zeroth Law of Thermodynamics ............................. 57 Pump Similitude ............................................................. 98 First Law of Thermodynamics ................................ 58~ ~ Performance Curves ........................................................ 98 Work ................................................................................ 58 Series and Parallel Pumping ........................................... 99 Heat ................................................................................. 58 Design Guidelines ........................................................... 100 First Law of Thermodynamics for Closed Systems ....... 58 Reciprocating Pumps ...................................................... 103 First Law of Thermodynamics for Open Systems .......... 58 Compressors ............................................................. 110 Second Law of Thermodynamics ............................ 59 Definitions ...................................................................... 110 Reversible Processes and Cycles .................................... 59 Performance Calculations for Reciprocating Thermodynamic Temperature Scale ............................... 59 Compressors ............................................................... 111 Useful Expressions ......................................................... 59 Estimating Suction and Discharge Volume Bottle Thermodynamic Cycles ........................................... 60 Sizes for Pulsation Control for Reciprocating Basic Systems and Systems Integration ......................... 60 Compressors ............................................................... 114 Carnot Cycle ................................................................... 60 Compression Horsepower Determination ....................... 117 Rankine Cycle: A Vapor Power Cycle ............................ 61 Generalized Compressibility Factor ............................... 119 Reversed Rankine Cycle: A Vapor Refrigeration Cycle. 61 Centrifugal Compressor Performance Calculations ....... 120 Brayton Cycle: A Gas Turbine Cycle ............................. 62 Estimate HP Required to Compress Natural Gas ........... 123 Otto Cycle: A Power Cycle ............................................ 63 Estimate Engine Cooling Water Requirements .............. 124 vi Estimate Fuel Requirements for Internal Combustion Lubricant Selection ......................................................... 162 Engines ....................................................................... 124 Lubricating Methods ....................................................... 163 References ................................................. 124 Relubrication ................................................................... 164 Cleaning, Preservation, and Storage ............................... 165 6: Drivers, 125 Mounting ................................................................... 166 Shafting ........................................................................... 166 Housings ......................................................................... 169 Motors: Efficiency .................................................... 126 Bearing Clearance ........................................................... 172 Motors: Starter Sizes ............................................... 127 Seals ................................................................................ 174 Motors: Service Factor ............ 127 Sleeve Bearings ......................................................... 175 Motors: Useful Equations ......................................... 128 References ................................................................. 177 Motors: Relative Costs ...... ....................................... 128 Motors: Overloading ................................................ 129 9: Piping and Pressure Vessels, 178 Steam Turbines: Steam Rate .................. 129 Steam Turbines: Efficiency ........................ 129 Gas Turbines: Fuel Rates ......................................... 130 Process Plant Pipe .................................................... 179 Gas Engines: Fuel Rates .......................................... 132 Definitions and Sizing .................................................... 179 Gas Expanders: Available Energy .......................... 132 Pipe Specifications .......................... . ............................... 187 Storing Pipe .................................................................... 188 7: Gears, 133 Calculations to Use ......................................................... 189 Transportation Pipe Lines 190 Steel Pipe Design ............................................................ 190 Ratios and Nomenclature ................ 134 Gas Pipe Lines ............................................................ 190 Spur and Helical Gear Design ................................. 134 Liquid Pipe Lines ........................................................ 192 Bevel Gear Design .................................................... 139 Pipe Line Condition Monitoring ............................. 195 Cylindrical Worm Gear Design ............. 141 Pig-based Monitoring Systems ....................................... 195 Materials .................................................................. 142 Coupons .......................................................................... 196 Summary of Gear Types .......................................... 143 Manual Investigation ...................................................... 196 Buying Gears and Gear Drives .......... 144 Cathodic Protection ........................................................ 197 References ...................................... 144 Pressure Vessels ........................................................ 206 Stress Analysis ................................................................ 206 8: Bearings, 145 Failures in Pressure Vessels ............................................ 207 Loadings ......................................................................... 208 Stress ............................................................................... 209 Types of Bearings ..................................................... 146 Procedure "1 General Vessel Formulas ........................... 213 Ball Bearings .................................................................. 146 Procedure 2: Stresses in Heads Due to Internal Roller Bearings ............................................................... 147 Pressure ....................................................................... 215 Standardization ............................................................... 149 Joint Efficiencies (ASME Code) .................................... 217 Materials ......................................................................... 151 Properties of Heads ......................................................... 218 Rating and Life ......................................................... 152 Volumes and Surface Areas of Vessel Sections .............. 220 ABMA Definitions ......................................................... 152 Maximum Length of Unstiffened Shells ........................ 221 Fatigue Life ..................................................................... 153 Useful Formulas for Vessels ........................................... 222 Life Adjustment Factors ................................................. 154 Material Selection Guide ................................................ 224 Load and Speed Analysis ......................................... 156 References ....................................................................... 225 Equivalent Loads ............................................................ 156 Contact Stresses .............................................................. 157 10: Tribo (cid:12)9 I ogy, 226 Preloading ....................................................................... 157 Special Loads .................................................................. 158 Effects of Speed ........... ............................................ 159 Introduction .............................................................. 227 Lubrication ............................................................... 160 Contact Mechanics ................................................... 227 General ............................................................................ 160 Two-dimensional (Line) Hertz Contact of Cylinders ..... 227 Oils .................................................................................. 161 Three-dimensional (Point) Hertz Contact ....................... 229 Greases ............................................................................ 161 Effect of Friction on Contact Stress ................................ 232 vii Yield and Shakedown Criteria for Contacts ................... 232 Mechanical Testing ... 284 Topography of Engineering Surfaces ..................... 233 Tensile Testing ................................................................ 284 Definition of Surface Roughness .................................... 233 Fatigue Testing ................................................................ 285 Contact of Rough Surfaces ............................................. 234 Hardness Testing ............................................................. 286 Life Factors ..................................................................... 234 Creep and Stress Rupture Testing ................................... 287 Friction ...................................................................... 235 Forming ..................................................................... 288 Wear ........................................................................... 235 Casting ....................................................................... 289 Lubrication 236 Case Studies .............................................................. 290 References ................................................................. 237 Failure Analysis .............................................................. 290 Corrosion ........................................................................ 291 :11 Vibration, 238 References ................................................................. 292 Vibration Definitions, Terminology, and :31 Stress dna Strain, 294 Symbols ................................................................. 239 . . . . . . . . Solving the One Degree of Freedom System .......... 243 Fundamentals of Stress and Strain ......................... 295 Solving Multiple Degree of Freedom Systems ....... 245 Introduction ..................................................................... 295 Vibration Measurements and Instrumentation ..... 246 Definitions--Stress and Strain ....................................... 295 Table A: Spring Stiffness ......................................... 250 Equilibrium ..................................................................... 297 Table B: Natural Frequencies of Simple Systems.. 251 Compatibility .................................................................. 297 Table C: Longitudinal and Torsional Vibration of Saint-Venant's Principle .................................................. 297 Uniform Beams ..................................................... 252 Superposition .................................................................. 298 Table D: Bending (Transverse) Vibration of Plane Stress/Plane Strain ................................................ 298 Uniform Beams ..................................................... 253 Thermal Stresses ............................................................. 298 Stress Concentrations ............................................... 299 Table E: Natural Frequencies of Multiple DOF Determination of Stress Concentration Factors .............. 300 Systems .................................................................. 254 Design Criteria for Structural Analysis ................. 305 Table F: Planetary Gear Mesh Frequencies .......... 255 General Guidelines for Effective Criteria ....................... 305 Table G: Rolling Element Bearing Frequencies Strength Design Factors .................................................. 305 and Bearing Defect Frequencies ......................... 256 Beam Analysis ........................................................... 306 Table H: General Vibration Diagnostic Limitations of General Beam Bending Equations .......... 307 Frequencies ........................................................... 257 Short Beams .................................................................... 307 References ................................................................. 258 Plastic Bending ............................................................... 307 Torsion ............................................................................ 308 :21 Materials, 259 Pressure Vessels ........................................................ 309 Thin-walled Cylinders .................................................... 309 Classes of Materials .................................................. 260 Thick-walled Cylinders .................................................. 309 Definitions ................................................................. 260 Press Fits Between Cylinders .................................. 310 Metals ........................................................................ 262 Rotating Equipment ................................................. 310 Steels ............................................................................... 262 Rotating Disks ................................................................ 310 Tool Steels ...................................................................... 264 Rotating Shafts ................................................................ 313 Cast Iron .......................................................................... 265 Flange Analysis ................................................. (cid:12)9 ....... 315 Stainless Steels ................................................................ 266 Flush Flanges .................................................................. 315 Superalloys ..................................................................... 268 Undercut Flanges ............................................................ 316 Aluminum Alloys ........................................................... 269 Mechanical Fasteners ............................................... 316 Joining ............................................................................. 270 Threaded Fasteners ......................................................... 317 Coatings .......................................................................... 273 Pins ................................................................................. 318 Corrosion ........................................................................ 276 Rivets .............................................................................. 318 Powder Metallurgy ......................................................... 279 Welded and Brazed Joints ....................................... 319 Polymers .................................................................... 281 Creep Rupture .......................................................... 320 Ceramics .................................................................... 284 Finite Element Analysis ........................................... 320 viii Overview ......................................................................... 321 Strain Measurement ................................................. 362 The Elements .................................................................. 321 The Electrical Resistance Strain Gauge .......................... 363 Modeling Techniques ...................................................... 322 Electrical Resistance Strain Gauge Data Acquisition ..... 364 Advantages and Limitations of FEM .............................. 323 Liquid Level and Fluid Flow Measurement .......... 366 Centroids and Moments of Inertia for Common Liquid Level Measurement ............................................. 366 Shapes .......... 324 Fluid Flow Measurement ................................................ 368 Beams: Shear, Moment, and Deflection Formulas References ................................................................. 370 for Common End Conditions .............................. 325 References ................................................................. 328 :61 gnireenignE ,scimonocE 372 :41 Fatigue, 923 Time Value of Money: Concepts and Formulas .... 373 Simple Interest vs. Compound Interest ........................... 373 Introduction .............................................................. 330 Nominal Interest Rate vs. Effective Annual Stages of Fatigue ....................................................... 330 Interest Rate ................................................................ 374 Design Approaches to Fatigue ................................. 331 Present Value of a Single Cash Flow To Be Received Crack Initiation Analysis ......................................... 331 in the Future ................................................................ 374 Future Value of a Single Investment ............................... 375 Residual Stresses ............................................................ 332 The Importance of Cash Flow Diagrams ........................ 375 Notches ........................................................................... 332 Analyzing and Valuing Investments/Projects with Real World Loadings ...................................................... 335 Multiple or Irregular Cash Flows ............................... 375 Temperature Interpolation .............................................. 337 Perpetuities ..................................................................... 376 Material Scatter ............................................................... 338 Future Value of a Periodic Series of Investments ........... 377 Estimating Fatigue Properties ......................................... 338 Annuities, Loans, and Leases ......................................... 377 Crack Propagation Analysis .................................... 338 Gradients (Payouts/Payments with Constant K--The Stress Intensity Factor ...................................... 339 Growth Rates) ............................................................. 378 Crack Propagation Calculations ..................................... 342 Analyzing Complex Investments and Creep Crack Growth ....................................................... 344 Cash Flow Problems ................................................... 379 Inspection Techniques .............................................. 345 Decision and Evaluation Criteria for Investments Fluorescent Penetrant Inspection (FPI) .......................... 345 and Financial Projects .......................................... 380 Magnetic Particle Inspection (MPI) ................................ 345 Payback Method ............................................................. 380 Radiography .................................................................... 345 Accounting Rate of Return (gog) Method .................... 381 Ultrasonic Inspection ...................................................... 346 Internal Rate of Return (IRR) Method ............................ 382 Eddy-current Inspection .................................................. 347 Net Present Value (NPV) Method ................................... 383 Evaluation of Failed Parts ............................................... 347 Nonmetallic Materials .............................................. 348 Sensitivity Analysis ................................................... 384 Decision Tree Analysis of Investments and Fatigue Testing .......................................................... 349 Financial Projects ................................................. 385 Liability Issues .......................................................... 350 Accounting Fundamentals ....................................... 389 References ................................................................. 350 References and Recommended Reading ................ 393 :51 Instrumentation, 352 ,xidneppA 394 Introduction .............................................................. 353 Temperature Measurement ..................................... 354 Conversion Factors .................................................. 395 Fluid Temperature Measurement .................................... 354 Systems of Basic Units .............................................. 399 Surface Temperature Measurement. ............................... 358 Decimal Multiples and Fractions of SI units ......... 399 Common Temperature Sensors ....................................... 358 Temperature Conversion Equations ....................... 399 Pressure Measurement ..... 359 Total Pressure Measurement ........................................... 360 Index, 400 Static/Cavity Pressure Measurement .............................. 361 sdiulF inabahB .P ,ytnahoM Ph.D., tnempoleveD ,reenignE nosillA enignE ynapmoC Fluid Properties .......................................................... Nondimensional Parameters ............................................. 7 Density, Specific Volume, Specific Weight, Equivalent Diameter and Hydraulic Radius ..................... 8 Specific Gravity, and Pressure ...................................... Pipe Flow .................................................................... 8 Surface Tension ................................................................ Friction Factor and Darcy Equation ................................. 9 Vapor Pressure .................................................................. Losses in Pipe Fittings and Valves ................................... 10 Gas and Liquid Viscosity ................................................. Pipes in Series .................................................................. 10 Bulk Modulus ................................................................... Pipes in Parallel ................................................................ 10 Compressibility ................................................................ Open-Channel Flow ................................................... 11 Units and Dimensions ...................................................... Frictionless Open-Channel Flow ...................................... 11 Fluid Statics ................................................................ Laminar Open-Channel Flow ........................................... 12 Turbulent Open-Channel Flow ......................................... 12 Manometers and Pressure Measurements ........................ Hydraulic Jump ................................................................ 12 Hydraulic Pressure on Surfaces ........................................ Buoyancy.. ........................................................................ Fluid Measurements .................................................. 13 Pressure and Velocity Measurements ............................... 13 Basic Equations .......................................................... Flow Rate Measurement ................................................... 41 Continuity Equation ......................................................... Hot-Wire and Thin-Film Anemometry ............................ 14 Euler's Equation ............................................................... Open-Channel Flow Measurements ................................. 15 Bemoulli's Equation ......................................................... Viscosity Measurements ................................................... 15 Energy Equation ............................................................... Other Topics ............................................................... 16 Momentum Equation ........................................................ Unsteady Flow, Surge, and Water Hammer ..................... 16 Moment-of-Momentum Equation .................................... Boundary Layer Concepts ................................................ 16 Advanced Fluid Flow Concepts ................................ Lift and Drag .................................................................... 16 Dimensional Analysis and Similitude .............................. Oceanographic Flows ....................................................... 17 2 Rules of Thumb for Mechanical Engineers FLUID SEITREPORP A fluid is defined as a "substance that deforms contin- ear relationship between the applied shear stress and the uously when subjected to a shear stress" and is divided into resulting rate of deformation; but in a non-Newtonian two categories: ideal and real. A fluid that has zero vis- fluid, the relationship is nonlinear. Gases and thin liquids cosity, is incompressible, and has uniform velocity distri- are Newtonian, whereas thick, long-chained hydrocar- bution is called an idealfluid. Realfluids are called either bons are non-Newtonian. Newtonian or non-Newtonian. A Newtonian fluid has a lin- ,ytisneD cificepS ,emuloV Specific ,thgieW cificepS ,ytivarG dna erusserP The density p is defined as mass per unit volume. In in- (cid:12)9 The specific gravity s of a liquid is the ratio of its consistent systems it is defined as lbm/cft, and in consis- weight to the weight of an equal volume of water at stan- tent systems it is defined as slugs/cft. The density of a gas dard temperature and pressure. The s of petroleum can be found from the ideal gas law: products can be found from hydrometer readings using API (American Petroleum Institute) scale. p = p/RT (1) where p is the absolute pressure, R is the gas constant, and (cid:12)9 The fluid pressure p at a point is the ratio of normal T is the absolute temperature. force to area as the area approaches a small value. Its The density of a liquid is usually given as follows: unit is usually lbs/sq, in. (psi). It is also often measured as the equivalent height h of a fluid column, through (cid:12)9 The specific volume sv is the reciprocal of density" the relation: ~v = 1/p (cid:12)9 The specific weight ), is the weight per unit volume" Y=Pg ecafruS noisneT Near the free surface of a liquid, because the cohesive product of a surface tension coefficient and the length of force between the liquid molecules is much greater than that the free surface. This is what forms a water droplet or a mer- between an air molecule and a liquid molecule, there is a cury globule. It decreases with increase in temperature, and resultant force acting towards the interior of the liquid. depends on the contacting gas at the free surface. This force, called the surface tension, is proportional to the ropaV erusserP Molecules that escape a liquid surface cause the evapo- of the temperature and increases with it. Boiling occurs ration process. The pressure exerted at the surface by these when the pressure above the liquid surface equals (or is less free molecules is called the vapor pressure. Because this is than) the vapor pressure of the liquid. This phenomenon, caused by the molecular activity which is a function of the which may sometimes occur in a fluid system network, temperature, the vapor pressure of a liquid also is a function causing the fluid to locally vaporize, is called cavitation. Fluids 3 saG dna diuqiL ytisocsiV Viscosity is the property of a fluid that measures its re- The t.l above is often called the absolute or dynamic sistance to flow. Cohesion is the main cause of this resis- viscosity. There is another form of the viscosity coefficient tance. Because cohesion drops with temperature, so does called the kinematic viscosity v, that is, the ratio of viscosity viscosity. The coefficient of viscosity is the proportional- to mass density: ity constant in Newton's law of viscosity that states that the shear stress x in the fluid is directly proportional to the ve- v=~p locity gradient, as represented below: Remember that in U.S. customary units, unit of mass den- du sity p is slugs per cubic foot. x = t~ ~dY (2) kluB suludoM A liquid's compressibility is measured in terms of its bulk The bulk modulus of elasticity K is its reciprocal: modulus of elasticity. Compressibility is the percentage change in unit volume per unit change in pressure: K= 1/C K is expressed in units of pressure. ~Sv/v C = ------- 8p ytilibisserpmoC Compressibility of liquids is def'med above. However, for sVp = RT a gas, the application of pressure can have a much greater effect on the gas volume. The general relationship is gov- where p is the absolute pressure, sV is the specific volume, erned by the perfect gas law: R is the gas constant, and T is the absolute temperature. stinU dna snoisnemiD One must always use a consistent set of units. Primary mass is ever referred to as being in Ibm (inconsistent sys- units are mass, length, time, and temperature. A unit system tem), one must first convert it to slugs by dividing it by is called consistent when unit force causes a unit mass to 32.174 before using it in any consistent equation. achieve unit acceleration. In the U.S. system, this system is Because of the confusion between weight (lbf) and mass represented by the (pound) force, the (slug) mass, the (foot) (Ibm) units in the U.S. inconsistent system, there is also a length, and the (second) time. The slug mass is def'med as similar confusion between density and specific weight the mass that accelerates to one ft/sec a when subjected to one units. It is, therefore, always better to resort to a consistent pound force (lbf). Newton's second law, F = ma, establish- system for engineering calculations. es this consistency between force and mass units. If the 4 Rules of Thumb for Mechanical Engineers DIULF SCITATS Fluid statics is the branch of fluid mechanics that deals there is no relative motion between fluid layers, there are with cases in which there is no relative motion between fluid no shear stresses in the fluid under static equilibrium. elements. In other words, the fluid may either be in rest or Hence, all free bodies in fluid statics have only normal forces at constant velocity, but certainly not accelerating. Since on their surfaces. , , , , , sretemonaM dna erusserP stnemerusaeM Pressure is the same in all directions at a point in a sta- above expression, we neglected the vapor pressure for tic fluid. However, if the fluid is in motion, pressure is de- mercury. But if we use any other fluid instead of mercury, fined as the average of three mutually perpendicular nor- the vapor pressure may be significant. The equilibrium mal compressive stresses at a point: equation may then be: P = xP( + Py + pz)/3 aP = (0.0361)(s)(h) + Pv(144) Pressure is measured either from the zero absolute pres- where 0.0361 is the water density in pounds per cubic sure or from standard atmospheric pressure. If the reference inch, and s is the specific gravity of the fluid. The consis- point is absolute pressure, the pressure is called the absolute tent equation for variation of pressure is pressure, whereas if the reference point is standard atmos- p=rh pheric (14.7 psi), it is called the gage pressure. A barom- eter is used to get the absolute pressure. One can make a where p is in lb/ft ,2 T is the specific weight of the fluid in simple barometer by filling a tube with mercury and in- lb/ft ,3 and h is in feet. The above equation is the same as p verting it into an open container filled with mercury. The - ywsh, where wY is the specific weight of water (62.4 mercury column in the tube will now be supported only by lb/ft )3 and s is the specific gravity of the fluid. the atmospheric pressure applied to the exposed mercury Manometers are devices used to determine differential surface in the container. The equilibrium equation may be pressure. A simple U-tube manometer (with fluid of spe- written as: cific weight 7) connected to two pressure points will have a differential column of height h. The differential pressure aP = 0.491(144)h will then be Ap = 2P( - Pl) = 7h. Corrections must be where h is the height of mercury column in inches, and 0.491 made if high-density fluids are present above the manome- is the density of mercury in pounds per cubic inch. In the ter fluid. ciluardyH erusserP no secafruS For a horizontal area subjected to static fluid pressure, 1 Pavg = ~" (hi + h2) sin 0 (3) the resultant force passes through the centroid of the area. If the plane is inclined at an angle 0, then the local pressure However, the center of pressure will not be at average depth will vary linearly with the depth. The average pressure but at the centroid of the triangular or trapezoidal pressure occurs at the average depth: distribution, which is also known as the pressure prism. Fluids 5 ycnayouB The resultant force on a submerged body by the fluid The principles of buoyancy make it possible to determine around it is called the buoyant force, and it always acts up- the volume, specific gravity, and specific weight of an un- wards. If v is the volume of the fluid displaced by the sub- known odd-shaped object by just weighing it in two different merged (wholly or partially) body, T is the fluid specific fluids of known specific weights lT and -2T This is possi- weight, and tnayoubF is the buoyant force, then the relation ble by writing the two equilibrium equations: between them may be written as: '~ (4) W = F l + ")v l = F 2 + 2Tv (5) Fbuoyan t -- V (cid:141) CISAB SNOITAUQE In derivations of any of the basic equations in fluids, the 3.1 st and 2nd Laws of Thermodynamics concept of control volume is used. A control volume is an 4. Proper boundary conditions arbitrary space that is defined to facilitate analysis of a flow region. It should be remembered that all fluid flow situa- Apart from the above relations, other equations such as tions obey the following rules: Newton's law of viscosity may enter into the derivation process, based on the particular situation. For detailed pro- .1 Newton's Laws of Motion cedures, one should refer to a textbook on fluid mechanics. 2. The Law of Mass Conservation (Continuity Equation) ytiunitnoC noitauqE For a continuous flow system, the mass within the fluid Q is defined as Q = A.V, the continuity equation takes the remains constant with time: dm/dt = .O If the flow discharge following useful form: rh = p IAIVI = 2V2A2p (6) s'reluE noitauqE Under the assumptions of: (a) frictionless, (b) flow When p is either a function of pressure p or is constant, the along a streamline, and (c) steady flow; Euler's equation Euler's equation can be integrated. The most useful rela- takes the form: tionship, called Bernoulli's equation, is obtained by inte- grating Euler's equation at constant density p. -~+ g.dz + v.dv = 0 (7)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.