Conference Proceedings of the Society for Experimental Mechanics Series Dario Di Maio Javad Baqersad Editors Rotating Machinery, Optical Methods & Scanning LDV Methods, Volume 6 Proceedings of the 40th IMAC, A Conference and Exposition on Structural Dynamics 2022 Conference Proceedings of the Society for Experimental Mechanics Series SeriesEditor KristinB.Zimmerman SocietyforExperimentalMechanics,Inc., Bethel,CT,USA TheConferenceProceedingsoftheSocietyforExperimentalMechanicsSeriespresentsearlyfindingsandcasestudiesfrom a wide range of fundamental and applied work across the broad range of fields that comprise Experimental Mechanics. SeriesvolumesfollowtheprincipletracksorfocustopicsfeaturedineachoftheSociety’stwoannualconferences:IMAC, AConferenceandExpositiononStructuralDynamics,andtheSociety’sAnnualConference&Expositionandwilladdress criticalareasofinteresttoresearchersanddesignengineersworkinginallareasofStructuralDynamics,SolidMechanics andMaterialsResearch. Dario Di Maio • Javad Baqersad Editors Rotating Machinery, Optical Methods & Scanning LDV Methods, Volume 6 Proceedings of the 40th IMAC, A Conference and Exposition on Structural Dynamics 2022 Editors DarioDiMaio JavadBaqersad EngineeringTechnology KetteringUniversity UniversityofTwente Flint,MI,USA ENSCHEDE,Overijssel,TheNetherlands ISSN2191-5644 ISSN2191-5652 (electronic) ConferenceProceedingsoftheSocietyforExperimentalMechanicsSeries ISBN978-3-031-04097-9 ISBN978-3-031-04098-6 (eBook) https://doi.org/10.1007/978-3-031-04098-6 ©TheSocietyforExperimentalMechanics,Inc.2023 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whetherthewholeorpartofthematerialisconcerned, specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynowknownorhereafter developed. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublicationdoesnotimply,evenintheabsenceofaspecific statement,thatsuchnamesareexemptfromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedate ofpublication.Neitherthepublishernortheauthorsortheeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutional affiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface RotatingMachinery,OpticalMethods&ScanningLDVMethodsrepresentoneofninevolumesoftechnicalpaperspresented at the 40th IMAC, A Conference and Exposition on Structural Dynamics, organized by the Society for Experimental Mechanics, and held February 7–10, 2022. The full proceedings also include volumes titled Nonlinear Structures & Systems; Dynamics of Civil Structures; Model Validation and Uncertainty Quantification; Dynamic Substructures; Special TopicsinStructuralDynamics&ExperimentalTechniques;SensorsandInstrumentation,Aircraft/AerospaceandDynamic EnvironmentsTesting;TopicsinModalAnalysis&ParameterIdentification;andDataScienceinEngineering. Eachcollectionpresentsearlyfindingsfromexperimentalandcomputationalinvestigationsonanimportantareawithin structuraldynamics. Theorganizerswouldliketothanktheauthors,presenters,sessionorganizers,andsessionchairsfortheirparticipationin thistrack. Flint,MI,USA JavadBaqersad Overijssel,TheNetherlands DarioDiMaio v Contents 1 Introduction to Multipath Doppler Vibrometry (MDV) for Validating Complex Models Accurately andWithoutContact.................................................................................................... 1 JeromeEichenbergerandJoergSauer 2 DICUsingLowSpeedCamerasonaScaledWindTurbineBlade................................................. 15 DavideMastrodicasa,CatarinaFerreira,EmilioDiLorenzo,BartPeeters,MárioAugustoPiresVaz, andPatrickGuillaume 3 DataChallengesforStructuralHealthMonitoringofElectricalMachines ...................................... 27 AlexBinder,ConnerOzatalar,KendylWright,PhillipCornwell,andNicholasLieven 4 NeuromorphicDataProcessingforEvent-DrivenImageryforAcousticMeasurements........................ 37 Kevin Zheng, Jack Sorensen, Celeste DeVilliers, Alessandro Cattaneo, Fernando Moreu, GregoryTaylor,andDavidMascareñas 5 TemplateMatchingandParticleFilteringforStructuralIdentificationofHigh-andLow-Frequency Vibration.................................................................................................................. 43 NicholasA.Valente,CelsoT.doCabo,ZhuMao,andChristopherNiezrecki 6 Multi-Sensor Collaborative Sampling Schemes to Reconstruct Undersampled Mechanical System SignalsforMachineryFaultDetection................................................................................ 51 SeanDetwiler,ErikBarbosa,KristenSteudel,JefferyTippmann,ChristianWard,andBrianWest 7 RegimeSortingforMultiscaleVibrationsandPhase-BasedMotionExtraction................................. 61 SeanCollierandTylerDare 8 DigitalImageCorrelationwithaNeuromorphicEvent-BasedImager............................................ 73 PeterMeyerhofer,AndreGreen,AlessandroCattaneo,andDavidMascareñas 9 Monitoring the Response of Electrical Components During Environmental Vibration Tests Using aScanningLaserDopplerVibrometer................................................................................ 81 CalebR.HeitkampandBenjaminL.Martins 10 AdvancedMeshReconstructionwithLow-BudgetRGBDHardwareforModalAnalysis ..................... 89 KaiHenningandDanielHerfert 11 StereoscopicHighSpeedCameraBasedOperationalModalAnalysisUsingaOne-Camera Setup ...................................................................................................................... 97 MaxGille,MilesR.W.Judd,andDanielJ.Rixen 12 In-plane Vibration Measurement of an Aluminum Plate Using a Three-Dimensional Continuously ScanningLaserDopplerVibrometerSystem......................................................................... 105 KeYuanandWeidongZhu 13 Measuring Full-Field Deformation in Ultra-High-Performance Concrete Structural Components UsingTag-BasedRoboticVision....................................................................................... 117 SyedZohaibHassan,Peng“Patrick”Sun,TianchengWang,GeorgiosApostolakis,andKevinMackie vii viii Contents 14 DynamicBehaviourandMagneto-MechanicalEfficiencyofaContactlessMagnetic Transmission............................................................................................................. 129 LucaDimauro,ElvioBonisoli,andMaurizioRepetto 15 Structural Damage Identification for Plate-Like Structures Using Two-Dimensional Teager Energy Operator-WaveletTransform .......................................................................................... 139 WeiZhou,YongfengXu,JueseokKim 16 AVision-BasedQuantificationApproachforReinforcedConcreteTunnelLinerDelamination............... 155 QixiangTang,ShafiqueAhmed,PaulNoyce,andGinaCrevello 17 An Optical Temporal and Spatial Vibration-Based Damage Detection Using Convolutional Neural NetworksandLongShort-TermMemory............................................................................ 159 CelsoT.doCaboandZhuMao 18 AHybrid-Attention-LSTM-BasedDeepConvolutionalNeuralNetworktoExtractModalFrequencies fromLimitedDataUsingTransferLearning......................................................................... 167 MehrdadShafieiDizajiandZhuMao 19 Detecting and Reconstructing the 3D Geometry of Subsurface Structural Damages Using Full-Field Image-BasedSensingandTopologyOptimization................................................................... 175 MehrdadShafieiDizaji,MohamadAlipour,DevinK.Harris,andZhuMao 20 OptimalKernelDesignfortheExtractionofSubtleMotionsUsingConvolutionalNeural Network................................................................................................................... 181 MehrdadShafieiDizajiandZhuMao Chapter 1 Introduction to Multipath Doppler Vibrometry (MDV) for Validating Complex Models Accurately and Without Contact JeromeEichenbergerandJoergSauer Abstract The need to validate simulation models of complex mechanical structures continues to grow in importance to increaseefficiencyinthedesignprocess.Thisisespeciallytruefornonlinearstructures(suchascompositepanelsandjointed components) where it is critical to use an accurate full-field measurement method. Multipath Doppler vibrometry (MDV) embodiesthemostrecentbreakthroughindynamiccharacterization.Itdelivershigh-qualityvibrationdataconsistentlyeven forthemostadverseenvironmentsandprovidesthetestengineerwithareliabletoolthatisfastandeasytosetup.Thetest objectismeasuredinitsunalteredformasitisnotnecessarytoapplyanysurfacetreatments.MDVcanbeappliedtoasingle pointmeasurementandfor1Daswellas3Dscanningvibrometrytests.Thebenefitsareillustratedinthispaperbyvarious applicationexamples. Keywords MultipathDopplervibrometer · MDV · QTec · Vibrometry · Noncontact · FEmodelvalidation · Vibration measurement · Qualitycontrol 1.1 Introduction All mechanical structures fail sooner or later if the applied forces exceed the structural limits. These limits need to be understood in depth so breakage can be avoided. Depending on the structure, the failure of just one component could result in the catastrophic breakdown of an entire system. Therefore, design and test engineers work closely together in productdevelopmenttosafelyachieveafasttime-to-market.Simulationsarevaluableinevaluatingmanydesigniterations quickly;validationtests,ontheotherhand,areinstrumentalinmakingsurethemodelreflectsthereal-worldscenario.This is important for critical components in aerospace, automotive, medical devices, civil structures, consumer electronics, and manyotherproducts. PreviousworkintroducedlaserDopplervibrometry(LDV)anditsbenefitstovariousapplications[1].Inthecurrentpaper, thefocusisonmultipathDopplervibrometry(MDV),whichcarriesthetrademarkQTecatPolytec.MDVisrevolutionary, anditsupersedesLDVinitscoredesignallowingtheusertoobtainreliabledatamorequickly. The purpose of this paper is to demonstrate the benefits of MDV in different applications. Additionally, considerations about the test setup and the excitation method will be touched upon because they are equally critical for performing successfulmodelvalidations.Experimentalmodalanalysisandoperationalmodalanalysis(EMAandOMA)arediscussed, andguidanceisprovidedforhowtopickthemostefficientexcitationmethod. J.Eichenberger Polytec,Inc.,Irvine,CA,USA e-mail:[email protected] J.Sauer PolytecGmbH,Waldbronn,Germany e-mail:[email protected] ©TheSocietyforExperimentalMechanics,Inc.2023 1 D.D.Maio,J.Baqersad(eds.),RotatingMachinery,OpticalMethods&ScanningLDVMethods,Volume6,Conference ProceedingsoftheSocietyforExperimentalMechanicsSeries,https://doi.org/10.1007/978-3-031-04098-6_1 2 J.EichenbergerandJ.Sauer 1.2 MDVforReal-WorldApplications Multipath Doppler vibrometry (MDV) is a novel technology and overcomes the limitations of optically uncooperative surfaces.ItsupersedesconventionalLDVinthefollowingmanner: 1. MDV is more reliable. There is minimal risk of signal artifacts (like dropouts) due to low signal return. Consistent resultswithsuperioropticalsensitivitycanbeexpectedeveninthemostdifficultsetupslikesteepincidenceangle,low reflectivity,andspecklemotion.Thedatatracesinthetimedomainarefreeofartifactsenablingaccurateinterpretation ofthedata. 2. MDViseasier.SettingupanMDViseasyasnosurfacetreatmentneedstobeappliedtothetestobject. 3. MDV is faster. In addition to faster setup times, the superior optical design eliminates the need for averaging in most applications,leadingtodramaticallyreducedmeasurementtimes. 4. MDVenablesnewapplications.Newapplicationsandusecasesareemerginglikemeasurementsonbiologicaltissuein uncontrolledenvironmentssuchasthehumanskinofapatientwhoisinmotion.Anotherexampleiscontinuousscanning LDV(CSLDV)wherethelaserbeamiscontinuouslymovingacrossatestsurface.EmployingMDVtechnologyforthis application,expectedtobecalledcontinuousscanningMDV(CSMDV),ispromisingtobesubstantiallymoresensitive andfaster. MDVisdesignedforreal-worldapplicationsinpotentiallyadverseenvironments,wheretheopticalpropertiesofthetest surfacearenotwellcontrolled.ReliableperformanceoftheMDVgivesthetestengineerconfidenceinthedatawhilemaking theacquisitionprocessefficientandhassle-freeonthemostchallengingtestarticles. The robustness of MDV measurements is illustrated on a hand that is moving back and forth (Fig. 1.1). Human skin is typicallyapooropticalreflectorandrepresentsoneofthemostchallengingopticalsurfacesforvibrometryespeciallywhen there is significant amount of movement. The time trace of the hand motion is displayed in real time via a laptop screen. Figure 1.2 shows the comparison of recorded time traces representing a standard LDV (top image) and an MDV (bottom image). Both measurements were acquired with an MDV one after the other; however, in the top image, the multipath vibrometerfeaturewasturnedoffmakingtheMDVactlikeastandardLDV.Nonetheless,thecomparisonisverycompelling astheMDVshowsacleartimetracewhereasahighnumberofdropoutsarevisiblewithastandardLDVleadingtoareduced signal-to-noiseratio(SNR). In another illustration, 3D LDV and 3D MDV time traces were analyzed on a composite panel that was excited by an impact hammer. Hammer excitation is common practice for modal testing as will be explained in the section Excitation Methods.Thehammerimpactonasoftlysuspendedtestobject(alsocommonpractice)willcausesomerigidbodymotion. Suchrigidbodymotiondoesn’tnegativelyaffectthemodaltestbutcanbeachallengeforopticalmeasurements.Incaseof astandardLDV,thelateralcomponentoftherigidbodymotioncausesdropoutsinthevibrationsignal(seeleftplotinFig. 1.3).TheMDVpridesitselfasdropout-freeinthisapplicationaswell(rightplotofFig.1.3). Fig.1.1 MDVmeasurementonahandthatismovingbackandforth(bluearrow).Thevelocitytraceofthehandmotionisdisplayedinrealtime