ebook img

Rotating Machinery, Optical Methods & Scanning LDV Methods, Volume 6: Proceedings of the 37th IMAC, A Conference and Exposition on Structural Dynamics 2019 PDF

122 Pages·2019·10.798 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Rotating Machinery, Optical Methods & Scanning LDV Methods, Volume 6: Proceedings of the 37th IMAC, A Conference and Exposition on Structural Dynamics 2019

Conference Proceedings of the Society for Experimental Mechanics Series Christopher Niezrecki · Javad Baqersad Dario Di Maio Editors Rotating Machinery, Optical Methods & Scanning LDV Methods, Volume 6 Proceedings of the 37th IMAC, A Conference and Exposition on Structural Dynamics 2019 ConferenceProceedingsoftheSocietyforExperimentalMechanicsSeries SeriesEditor KristinB.Zimmerman,Ph.D. SocietyforExperimentalMechanics,Inc., Bethel,CT,USA Moreinformationaboutthisseriesathttp://www.springer.com/series/8922 Christopher Niezrecki • Javad Baqersad (cid:129) Dario Di Maio Editors Rotating Machinery, Optical Methods & Scanning LDV Methods, Volume 6 Proceedings of the 37th IMAC, A Conference and Exposition on Structural Dynamics 2019 123 Editors ChristopherNiezrecki JavadBaqersad DepartmentMechanicalEngineering KetteringUniversity UniversityofMassachusettsLowell Flint,MI,USA Lowell,MA,USA DarioDiMaio DepartmentofMechanicalEngineering UniversityofBristol,QueensBuilding Bristol,UK ISSN2191-5644 ISSN2191-5652 (electronic) ConferenceProceedingsoftheSocietyforExperimentalMechanicsSeries ISBN978-3-030-12934-7 ISBN978-3-030-12935-4 (eBook) https://doi.org/10.1007/978-3-030-12935-4 LibraryofCongressControlNumber:2019936301 ©SocietyforExperimentalMechanics,Inc.2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthematerialisconcerned,specificallytherights oftranslation, reprinting, reuse ofillustrations, recitation, broadcasting, reproduction onmicrofilms orinany other physical way, and transmission or informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublicationdoesnotimply,evenintheabsenceofaspecific statement,thatsuchnamesareexemptfromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedate ofpublication.Neitherthepublishernortheauthorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorfor anyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutional affiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG. Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Rotating Machinery, Optical Methods & Scanning LDV Methods represents one of the eight volumes of technical papers presented at the 37th IMAC, A Conference and Exposition on Structural Dynamics, organized by the Society for Experimental Mechanics, and held in Orlando, Florida, January 28–31, 2019. The full proceedings also include volumes on Nonlinear Structures and Systems; Dynamics of Civil Structures; Model Validation and Uncertainty Quantification; Dynamics of Coupled Structures; Special Topics in Structural Dynamics & Experimental Techniques; Sensors and Instrumentation,Aircraft/Aerospace,EnergyHarvesting&DynamicEnvironmentsTesting;andTopicsinModalAnalysis &Testing. Eachcollectionpresentsearlyfindingsfromexperimentalandcomputationalinvestigationsonanimportantareawithin structuraldynamics. Theorganizerswouldliketothanktheauthors,presenters,sessionorganizers,andsessionchairsfortheirparticipationin thistrack. Lowell,MA,USA ChristopherNiezrecki Flint,MI,USA JavadBaqersad Bristol,UK DarioDiMaio v Contents 1 DetectionofSourcesofNonlinearityinMultipleBoltedJointsbyUseofLaserVibrometer................... 1 ArnaldodelliCarri,SanteCampanelli,andDarioDi Maio 2 SingleHigh-SpeedCameraBased3DDeflectionReconstructioninFrequencyDomain........................ 15 JankoSlavicˇ,DomenGorjup,andMihaBoltežar 3 OperationalModalAnalysisofaThin-WalledRocketNozzleUsingPhase-BasedImageProcessing andComplexityPursuit................................................................................................. 19 MarcA.Eitner,BenjaminG.Miller,JayantSirohi,andCharlesE.Tinney 4 Full-FieldStrainShapeEstimationfrom3DSLDV................................................................. 31 BryanWitt,DanRohe,andTylerSchoenherr 5 CharacterizationofaSmallElectro-MechanicalContactUsingLDVMeasurementTechniques.............. 47 KelseyM.Johnson 6 RemoteDetectionofAbnormalBehaviorinMechanicalSystems................................................. 59 GretaColford,EricaJacobson,KadenPlewe,EricFlynn,andAdamWachtor 7 Modal Analysis of a High-Speed Turbomachinery for Reliable Prediction of RD Properties ThroughoutOperatingSpeedRange.................................................................................. 71 YuheiShindo,KazuhikoAdachi,SatoshiKawasaki,andMitsuruShimagaki 8 MappingMotion-MagnifiedVideostoOperatingDeflectionShapeVectorsUsingParticleFilters............ 75 AralSarrafiandZhuMao 9 StructuralHealthMonitoringofWindTurbinesUsingaDigitalImageCorrelationSystemonaUAV ...... 85 AshimKhadka,YaominDong,andJavadBaqersad 10 Full-FieldModeShapeIdentificationofVibratingStructuresfromCompressivelySampledVideo.......... 93 Bridget Martinez, Yongchao Yang, Ashlee Liao, Charles Farrar, Harshini Mukundan, Pulak Nath, andDavidMascareñas 11 ExperimentalModalAnalysisofTumorigenesisandCancerMetastasis ......................................... 101 BridgetMartinez,YongchaoYang,CharlesFarrar,HarshiniMukundan,PulakNath,andDavidMascareñas 12 FullFieldStrainMeasurementsUsing3DLaserVibrometry...................................................... 105 SamuelTilmann 13 Output-Only Modal Parameter Estimation Using a Continuously Scanning Laser Doppler VibrometerSystemwithApplicationtoStructuralDamageDetection ........................................... 113 Y.F.Xu,Da-MingChen,andW.D.Zhu vii Chapter 1 Detection of Sources of Nonlinearity in Multiple Bolted Joints by Use of Laser Vibrometer ArnaldodelliCarri,SanteCampanelli,andDarioDiMaio Abstract The use of non-contact measurement methods for detecting and locating sources of nonlinearities can be potentially a break-through in the nowadays experimental modal analysis. The primary goal is to define more effective teststrategies,wherebycontactsensorswillmeasurethenonlinearvibrationresponsesatthebestlocationpossible.Jointed structuresareatypicalexamplewherealargenumberofthejointcanposethequestionofwherewhatandhowtomeasure the nonlinear response. Upon the identification of one, or more, nonlinear response mode the objective is to determine whereisthesourceofsuchnonlinearvibration.Nonlinearitycanbecharacterisedwhenitssourceiswelldefinedandcanbe adequatelytested.Thispaperwillattempttodetectandlocatethesourceofnonlinearityfromamulti-beamjointedassembly. Theapproachwillbecarriedoutbyusingbothcontactandnon-contactmeasurementmethods,theresultsofwhichwillbe comparedandevaluated.Theoperatortodetectthesourceofnonlinearitywillbethecoherencefunctionappliedtorandom responsedata. Keywords SLDV · Boltedjoints · Nonlinearvibrationtesting 1.1 Introduction ThispaperattemptstoexploitthepotentialofthescanningLDVsystemtomeasurevibrationnonlinearresponseatamuch greaternumberoflocations,thanitcanbedonebyusingsetupbasedoncontactsensors.Theobjectiveistousesuchdenser measurementgrid to identify one, or more, sourcesof nonlinearity.It is not intendedto replace the accelerometerfor the characterizationandquantificationofasourceofnonlinearity.Thelocalizationofnonlinearitiesisfundamentalwhensuch sources are discrete as for bolted structures. It is notorious that structures with a high number of interfaces will exhibit nonlinearresponseswhensubjectedtohighamplitudeofexcitationforces.Fromamodelvalidationviewpoint,theaccurate localization, characterizationand quantificationof the nonlinearitycan make the modellingwork more effectiveand time efficient.Resourcescanbededicatedtoimprovingthemodelwhereitisneededbyinclusionofthenonlinearphysics. Thelocalizationofnonlinearitieswasusefullycarriedoutin[1].Itwasdemonstratedthatbysettingupagoodnumberof accelerometersonastructurethelocalizationcanbedonewithagoodlevelofaccuracy.However,itlookedclearthatsuch amethodoflocalizationdependsonthesetupofthecontactsensors,andwhenanengineeringjudgmentisnotbasedonthe identificationofnonlinearityitmightbepossiblethatnonlinearitiesstayhiddentothesensors.Followingthemethodology applied to locate the source of nonlinearity (explained in the following sections), it become interesting to use a different technology which would enable much denser measurement grind than offered by contact sensors. Three research works addressedthetopicoflocalizationbyusingthescanninglaservibrometer.Oneresearchwasfocussedonboltedflangesand the use ofcontinuousscanningmethodstoidentifythe sourceof nonlinearity.Thatapproachshowedthatbymappingthe responsephaseofthedeflectionshapemeasuredatconstantfrequencyandseverallevelofamplitudesonecoulddetermine thelevelofnonlinearityexhibitedbyavibrationmode[2].Thescanninglaservibrometerwasusedinitsstep-scanningmode intwoattempts,wherehighresolutionmodeshapesweremeasuredtodeterminewhichmodewouldexertmorenonlinear A.delliCarri SchoolofMechanical,AerospaceandAutomotiveEngineering,CoventryUniversity,Coventry,UK S.Campanelli DepartmentofMechanicalEngineering,Universita’PolitecnicadelleMarche,Ancona,Italy D.DiMaio((cid:2)) DepartmentofMechanicalEngineering,UniversityofBristol,QueensBuilding,Bristol,UK e-mail:[email protected] ©SocietyforExperimentalMechanics,Inc.2019 1 C.Niezreckietal.(eds.),RotatingMachinery,OpticalMethods&ScanningLDVMethods,Volume6,ConferenceProceedings oftheSocietyforExperimentalMechanicsSeries,https://doi.org/10.1007/978-3-030-12935-4_1 2 A.delliCarrietal. response[3].Theoutcomeofthatresearchshowedthatsomemodeshapescreatehighstraindistributionattheflanges’region and thus enabling interface nonlinear conditions. A more recently publication was focussed on use the stepped scanning methodto measurethe responsephase of the deflectionshapesof an aero-enginecasing assemblyonto whichaccessories weremountedtogeneratesourcesofnonlinearities[4].Theresearchshowedthatresponsephaseofthedeflectionshapewas agoodindicatorofthesourceofnonlinearity. The present paper aims (i) at starting from those earlier success to detect the nonlinearities of a structure, and (ii) at combiningthemethodoflocalizationbasedonaccelerometerswiththeuseofascanninglaservibrometer.Anovelstructure willbeusedto explorethese newdevelopments.Thestructureismadeoften blockseachofwhichboltedbytwo boltsto form a single prismatic beam. The source of nonlinearity can be moved by opening one or more pairs of bolts. The next sectionwillexplaininmoredetailsthetestsstructureandsetup.Thepaperwillproceedbyattemptingthesamelocalization methodusingasetoffourreferenceaccelerometersandthemeasurementmadebyascanninglaservibrometeroveragrid of30points. 1.2 TestStructure, Setup andExperimental Method Theteststructurewasdesignedwiththeideatorepeatthesamebasicunittentimes.Figure1.1showsthebasicunitwhich canbeboltedbytwopairsofM8bolts.Figure1.2showsboththesolidmodeandtherealunitmadeofmildsteel.Thefull assemblyofthetenunitsispresentedinFig.1.3.The18boltsweretightenedupto20Nmtoassurefullclampingconditions. Thebeamwassuspendedbystringsfromaframeandashakerwasinstalledatthebottomoftheassembly,asshowedin Fig. 1.4a.Thirtymeasurementpointswere markedon thebeam wherethe laser beamwouldmeasurethe vibrations.Four referenceaccelerometerswerealsoincludedinthemeasurementsetup,oneofwhichatthedrivepointlocation.Figure1.4b showsthemeasurementsetup. Acustom-madecontrolLabViewpanelwasusedtodrivethelaserbeamontothemeasurementpointsandtoacquirethe vibrationresponse. Itwas decidedto avoid the use the Polytec controlpanelto give full accessibility to the generationof the excitation signal. Four randomnoise signals, with 1M samples at 10 kHz sampling frequency,were generatedat four differentamplitudes.Thesefoursignalswerestoredandusedformeasuringthe30LDVmeasurementpointsandthefour accelerometers.Thisapproachwasdecidedtoallowtheexcitationsignalfromthegeneratortobealwaysthesame,avoiding Fig.1.1 CADdrawingofthebasicunit 1 DetectionofSourcesofNonlinearityinMultipleBoltedJointsbyUseofLaserVibrometer 3 Fig.1.2 Solidmodelin(a)andrealunitin(b) Fig.1.3 Solidmodelin(a)andrealassemblyin(b) variationsifitweretobegeneratedeverytime.Thefouramplitudeswereidentifiedasfollows,18mV,180mV,1080mV and1800mV,respectively.Thegainoftheamplifierwasfixedatonelevelandneverchanged. Thetestprogrammewasdesignedassuch.Thefirsttrialwasfocussedonassuringthecompletelinearityofthestructure forthe20Nmtorqueappliedtothe18bolts.Hence,levels18mV,180mVand1800mVwereattempted.Thesecondtrial, labelledasconfigurationA,wascarriedoutbyreducingthetorquefrom20Nm,to13Nmand8Nmofthepairofbolts,the fifthfromthetop.Thethirdtrial,labelledconfigurationB,wascarriedoutusingthesametorquelevelsreducingthepairof bolts,thethirdfromthetop,andbyresettingthefifthpairto20Nm.Atotalofthreeconfigurationweretried. 1.3 Theoretical Method Theanalysiswasperformedusingconditionedspectraltechniquesfrom[5–8]andalreadyappliedinanearlierformin[1, 9].Thegeneralequationofmotionforan-DOFsnonlinearsystemis (cid:2)M (cid:3) (cid:4) (cid:5)(cid:6) Mx¨(t)+Cx˙(t)+Kx(t)+ q ·g w x(t),w x˙(t) =f(t) i i i i i=1 Where M, K, C are the n × n mass, stiffness and dampingmatrices, x(t) and its derivativesare the nx1 displacements, velocitiesandaccelerationsvectors,f(t)isthenx1forcingvector. In addition to the usual linear terms, there are M nonlinear (vectorial) terms that contribute to the system: under the summation operatorone can discriminate the scaling factor q that quantifies the strength of the nonlinearitywith respect i

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.