This Page Intentionally Left Blank ROBUSSTT ATISTICS SecondE dition PeterH uJb.e r ProfesosfoS rt atisrteitcisr,e d KlosteSrwsi,t zerland ElvezMi.oR onchetti ProfesosfoS rt atistics UniversoifGt eyn evSaw,i tzerland @ WILEY A JOHNW ILE&Y SONSI,N C.P,U BLICATION Copyri©g h2t009b yJ ohWni le&y SonsI,n cA.l lr ighrtess erved. PublisbhyeJ do hWni le&y SonsI,n cH.o,b okeNne,w Jersey. Publisshiemdu ltaneionuC salnya da. No parto ft hipsu blicamtaiyob ner eproduscteodr,ie nda r etriseyvsatle omr,t ransmiitnta endyf oromr bya nym eanse,l ectromneicch,a nipchaolt,o copyriencgo,r disncga,n nionrgo ,t herwiesxec,e pats permitutnedde Sre ctiIo0 n7o r1 08o ft he1 976U niteSdt atCeosp yriAgchttw, i thoeuitt htehrep rior writtpeenr missoifto hne P ublisohrea ru,t horiztahtrioounpg ahy menotft hea pproprpieart-ec ofpeyet o theC opyriCglheta raCnecnet eIrn,c 2.2,2 R osewooDdr ivDea,n verMsA, 0 1923(,9 787)5 0-840f0a,x (9787)5 0-44o7r0o ,n t hewe ba tw ww.copyrightR.ecquoems.tt ots h eP ublisfhoeprre rmisssihoonu ld bea ddrestsoet dh Pee rmissiDoenpsa rtmeJnoth,Wn i le&y SonsI,n cI.l,l R iveSrt reHeotb,o keNnJ, 07030(,2 017)4 8-60f1a1x,( 2017)4 8-60o0r8o ,n lianteh ttp://www.wiley.com/go/permission. LimiotfL iability/DiosfWc alarirmaenWrth yi:l teh ep ublisahnedar u thhoarv ues etdh ebiers etf foirnt s prepartihnigbs o okt,h emya ken or epresentoartw iaornrsa ntwiietsh retsopt ehceat c curaocry completeonfet shsec onteonftt sh is baonodsk p ecifidciaslcllyaa inmyi mpliweadr rantoife s merchantaobrif liittnyfe osarsp articupluarrp oNsoe .w arranmtayyb ec reatoered x tendbeyds ales representoartw irvietsts eanl emsa teriTahlesa .d viacned s tratecgoinetsa ihneerde miany n otb es uitable foyro usri tuatYioouns .h oulcdo nsuwlitt ah p rofessiwohnearalep proprNieaitteh.te hrep ublisnhoerr authsohra blell iabfloear n yl ososf p rofoirat n yo thecro mmercdiaamla geisn,c ludbiuntng o tl imited tos peciianlc,i denctoanls,e quenotroi tahled,ra mages. Forg enerianlf ormaotnio ounro theprr oducatnsds erviocref so tre chniscuaplp oprtl,e acsoen taocutr CustomCearr Dee partmweintth tihneU niteSdt ataets( 8 007)6 2-29o7u4t,s itdheeU niteSdt ataets (3175)7 2-39o9r3f ax( 3175)7 2-4002. Wileayl spou blisihtebsso okisn a v arieotfey l ectrfoonrimca Stosm.e c ontetnhtaa tp peairnps r imnaty notb ea vailaibnel lee ctrfoonrimca Fto.ri nformaatbioounWt i lepyr oducvtiss,oi utrw ebs itaet www.wiley.com. Libraoryf C ongreCsast aloging-in-PuDbaltiac:a tion HuberP,e teJr. Robusstt atistics, seIcP oentdeJ r.He udbietrEi,lo vne zRioon chetti. p.e m. Includbeisb liograrpehfiecraelna cnedis n dex. ISBN9 78-0-470-12(9c9l0o-t6h ) I.R obusstt atisIt.Ri ocnsc.h etEtliv,e ziIoIT..i tle. QA276.H728050 9 519.5-dc22 2008033283 Printientd h eU niteSdt atoefsA merica 10 9 8 7 46 3 52 I Tot hem emory of JohnW. Tukey This Page Intentionally Left Blank CONTENTS Preface xiii Preface to First Edition XV 1 Generalities 1 1.1 Why Robust Procedures? 1 1.2 What Should a Robust Procedure Achieve? 5 1.2.1 Robust, Nonparametric, and Distribution-Free 6 1.2.2 Adaptive Procedures 7 1.2.3 Resistant Procedures 8 1.2.4 Robustness versus Diagnostics 8 1.2.5 Breakdown point 8 1.3 Qualitative Robustness 9 1.4 Quantitative Robustness 11 1.5 Infinitesimal Aspects 14 1.6 Optimal Robustness 17 1.7 Performance Comparisons 18 vii CONTENTS Viii 1.8 Computation of Robust Estimates 18 1.9 Limitations to Robustness Theory 20 2 The Weak Topology and its Metrization 23 2.1 General Remarks 23 2.2 The Weak Topology 23 2.3 Levy and Prohorov Metrics 27 2.4 The Bounded Lipschitz Metric 32 2.5 Frechet and Gateaux Derivatives 36 2.6 Hampel's Theorem 41 3 The Basic Types of Estimates 45 3.1 General Remarks 45 3.2 Maximum Likelihood Type Estimates (M -Estimates) 46 3.2.1 Influence Function of M -Estimates 47 3.2.2 Asymptotic Properties of M-Estimates 48 3.2.3 Quantitative and Qualitative Robustness of M- Estimates 53 3.3 Linear Combinations of Order Statistics (£-Estimates) 55 3.3.1 Influence Function of £-Estimates 56 3.3.2 Quantitative and Qualitative Robustness of £-Estimates 59 3.4 Estimates Derived from Rank Tests (R-Estimates) 60 3.4.1 Influence Function of R-Estimates 62 3.4.2 Quantitative and Qualitative Robustness of R-Estimates 64 3.5 Asymptotically Efficient M-, L-, and R-Estimates 67 4 Asymptotic Minimax Theory for Estimating Location 71 4.1 General Remarks 71 4.2 Minimax Bias 72 4.3 Minimax Variance: Preliminaries 74 4.4 Distributions Minimizing Fisher Information 76 4.5 Determination of F0 by Variational Methods 81 4.6 Asymptotically Minimax M -Estimates 91 4.7 On the Minimax Property for L-and R-Estimates 95 4.8 Redescending M -Estimates 97 4.9 Questions of Asymmetric Contamination 101 CONTENTS ix 5 Scale Estimates 105 5.1 General Remarks 105 5.2 M-Estimates of Scale 107 5.3 L-Estimates of Scale 109 5.4 R-Estimates of Scale 112 5.5 Asymptotically Efficient Scale Estimates 114 5.6 Distributions Minimizing Fisher Information for Scale 115 5.7 Minimax Properties 119 6 Multiparameter Problems-in Particular Joint Estimation of Location and Scale 125 6.1 General Remarks 125 6.2 Consistency of M -Estimates 126 6.3 Asymptotic Normality of M-Estimates 130 6.4 Simultaneous M -Estimates of Location and Scale 133 6.5 M -Estimates with Preliminary Estimates of Scale 137 6.6 Quantitative Robustness of Joint Estimates of Location and Scale 139 6.7 The Computation of M-Estimates of Scale 143 6.8 Studentizing 145 7 Regression 149 7.1 General Remarks 149 7.2 The Classical Linear Least Squares Case 154 7.2.1 Residuals and Outliers 158 7.3 Robustizing the Least Squares Approach 160 7.4 Asymptotics of Robust Regression Estimates 163 7.4.1 The Cases hp2 0 and hp 0 164 ___. ___. 7.5 Conjectures and Empirical Results 168 7.5.1 Symmetric Error Distributions 168 7.5.2 The Question of Bias 168 7.6 Asymptotic Covariances and Their Estimation 170 7.7 Concomitant Scale Estimates 172 7.8 Computation of Regression M -Estimates 175 7.8.1 The Scale Step 176 7.8.2 The Location Step with Modified Residuals 178 7.8.3 The Location Step with Modified Weights 179
Description: