ebook img

Robust Linear Filter Design via LMIs and Controller Design with Actuator Saturation via SOS ... PDF

132 Pages·2012·0.74 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Robust Linear Filter Design via LMIs and Controller Design with Actuator Saturation via SOS ...

Robust Linear Filter Design via LMIs and Controller Design with Actuator Saturation via SOS Programming by Kunpeng Sun B.S. (Dalian University of Technology, P.R. China) 1996 M.S. (Tsinghua University, P.R. China) 1999 A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering-Mechenical Engineering in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA, BERKELEY Committee in charge: Professor Andrew Packard, Chair Professor Kameshwar Poolla Professor Maciej Zworski Spring 2004 The dissertation of Kunpeng Sun is approved: Chair Date Date Date University of California, Berkeley Spring 2004 Robust Linear Filter Design via LMIs and Controller Design with Actuator Saturation via SOS Programming Copyright 2004 by Kunpeng Sun 1 Abstract Robust Linear Filter Design via LMIs and Controller Design with Actuator Saturation via SOS Programming by Kunpeng Sun Doctor of Philosophy in Engineering-Mechenical Engineering University of California, Berkeley Professor Andrew Packard, Chair Robust filtering under different assumptions and formulations are considered. Ro- bust filter design for systems described by time-varying linear fractional transforma- tion (LFT) uncertain models is reformulated as linear matrix inequalities (LMIs) via upper bound techniques. The contribution is the treatment of norm bounded (both structuredandunstructured)LFTuncertaintyusingLMI(ratherthanRiccati)meth- ods. Furthermore, in the norm bounded unstructured uncertainty case, our results are less conservative than those by methods based on Riccati equations. Robust filter design for systems with time-invariant parameter uncertainties in a polytope is also considered, using parameter dependent Lyapunov functions to solve the problem. In both cases, we use upper bounds rather than the actual performance objectives. 2 We also exploit that the robust filter design problem (with model uncertainty and noise)isconvexinthefilterasanoperator. Theimplicationisthatrobustfilterdesign can be carried out directly, rather than minimizing an upper bound of the objective function. We show that finite dimensional approximations can be used to obtain sub- optimal solutions with any degree of accuracy. A design algorithm is proposed, which is made up of successive finite dimensional approximations. This algorithm requires a worst case analysis result. A conceptual branch & bound algorithm is outlined, and a practical algorithm is given. Polynomial state feedback controller synthesis for systems subject to actuator saturation is also considered. We are interested in two kinds of problems. The first one is to design a controller to enlarge a domain of attraction (DOA), and the second is for disturbance rejection. Sum of squares (SOS) programming is the computational tool. These synthesis problems are not convex, and ad-hoc algorithms are proposed. For linear systems with saturation, algorithms here can be used to improve available results. Professor Andrew Packard Dissertation Committee Chair i To my parents and Nan, for their love and support over these years. ii Contents List of Figures iv List of Tables v 1 Introduction 1 1.1 Filtering problems and robustness . . . . . . . . . . . . . . . . . . . . 2 1.2 Problem formulation issues and problem solving tools . . . . . . . . . 4 1.3 From SDP to SOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Outline and contributions . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Robust filters for time-varying uncertain LFT systems – indirect method 12 2.1 Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 Preliminaries: analysis of uncertain LFT systems . . . . . . . . . . . 18 2.3 Robust H Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2 2.3.1 Robust Filter Synthesis via LMIs . . . . . . . . . . . . . . . . 23 2.3.2 Elimination of Filter Parameters . . . . . . . . . . . . . . . . 29 2.4 Robust H Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ∞ 2.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3 Robust filters for time-invariant uncertain systems in polytopes – indirect method 37 3.1 Problem setup and preliminaries . . . . . . . . . . . . . . . . . . . . . 38 3.2 Filtering result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4 Optimal worst case robust H filter design – direct method 45 ∞ 4.1 Worst-case analysis via branch & bound . . . . . . . . . . . . . . . . 48 iii 4.1.1 Branch & bound algorithm . . . . . . . . . . . . . . . . . . . . 50 4.2 A practical branch & bound algorithm . . . . . . . . . . . . . . . . . 52 4.2.1 Frequency and scalar complex uncertainty . . . . . . . . . . . 53 4.2.2 Worst-case performance assessment . . . . . . . . . . . . . . . 55 4.3 Filtering problem formulation and preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.4 (cid:178)-suboptimal filters via finite dimensional relaxation . . . . . . . . . . 72 4.5 Design algorithm and error bounds . . . . . . . . . . . . . . . . . . . 76 4.5.1 An algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.5.2 Casting the finite-dimensional problem as an SDP . . . . . . . 78 4.5.3 Bounds via worst case analysis . . . . . . . . . . . . . . . . . . 79 4.5.4 A lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.6 Suboptimal filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.7 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5 Controller Synthesis with Input Saturation – Applications of SOS Programming 88 5.1 Preliminaries – P-satz and SOS programs . . . . . . . . . . . . . . . . 90 5.1.1 Positivstellensatz and -Procedure . . . . . . . . . . . . . . . 90 S 5.1.2 SOS Programming . . . . . . . . . . . . . . . . . . . . . . . . 91 5.2 State-feedback to enlarge a domain of attraction . . . . . . . . . . . . 93 5.2.1 Controller design via SOS programming . . . . . . . . . . . . 95 5.2.2 Comparisons and a numerical example . . . . . . . . . . . . . 97 5.3 State-feedback for disturbance rejection . . . . . . . . . . . . . . . . . 100 5.3.1 Invariant set enlargement . . . . . . . . . . . . . . . . . . . . 101 5.3.2 Controller design for Problem 4 . . . . . . . . . . . . . . . . . 105 5.3.3 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . 108 5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6 Conclusions 111 Bibliography 114 iv List of Figures 1.1 Model Based Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1 Uncertain LFT systems . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 Comparison of Robust and Kalman Filters . . . . . . . . . . . . . . . 35 3.1 Two Robust H Filters . . . . . . . . . . . . . . . . . . . . . . . . . 43 ∞ 4.1 General Linear Fractional Form . . . . . . . . . . . . . . . . . . . . . 49 4.2 General Robust Design Problem . . . . . . . . . . . . . . . . . . . . . 66 4.3 Uncertain Plant and Filter . . . . . . . . . . . . . . . . . . . . . . . . 68 4.4 Comparison of Various Filters . . . . . . . . . . . . . . . . . . . . . . 87 5.1 saturation and level sets . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.2 The invariant ellipsoids and input saturation . . . . . . . . . . . . . . 109 5.3 Smaller invariant set and simulation results . . . . . . . . . . . . . . . 110 v List of Tables 4.1 Robust FIR Filters with Different Order . . . . . . . . . . . . . . . . 85 4.2 Comparison of Various Filters . . . . . . . . . . . . . . . . . . . . . . 86 5.1 DOA with different parameters . . . . . . . . . . . . . . . . . . . . . 99

Description:
Abstract. Robust Linear Filter Design via LMIs and Controller Design with Actuator. Saturation via SOS Programming by. Kunpeng Sun. Doctor of Philosophy in Engineering-Mechenical Engineering. University of .. semi-algebraic problems are formulated in a convex optimization framework, called.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.