ebook img

Robust Digital Processing of Speech Signals PDF

233 Pages·2017·4.966 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Robust Digital Processing of Speech Signals

Branko Kovačević · Milan Milosavljević Mladen Veinović · Milan Marković Robust Digital Processing of Speech Signals Robust Digital Processing of Speech Signals č ć ć Branko Kova evi Milan Milosavljevi (cid:129) ć ć Mladen Veinovi Milan Markovi (cid:129) Robust Digital Processing of Speech Signals 123 Branko Kovačević Mladen Veinović University of Belgrade Department ofInformatics andComputing Belgrade Singidunum University Serbia Belgrade Serbia Milan Milosavljević University of Belgrade Milan Marković Belgrade Department for Informatics Serbia Banca Intesa Belgrade Serbia ISBN978-3-319-53611-8 ISBN978-3-319-53613-2 (eBook) DOI 10.1007/978-3-319-53613-2 JointlypublishedwithAcademicMind ISBN:978-86-7466-677-7AcademicMind LibraryofCongressControlNumber:2017932436 ©AcademicMindandSpringerInternationalPublishingAG2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface ThisbookRobustDigitalProcessingofSpeechSignalsrepresentsaresultofyears of cooperation between the Institute for Applied Mathematics and Electronics and the Department for Automatics ofthe School of Electrical Engineering, University ofBelgrade,dedicatedtotheresearchofspeechsignalphenomena.Oneofthemain conclusions of these extensive investigations has been that the accuracy of the speech generation model always plays the key role, regardless of whether the applied procedure for parameter identification and estimation is used for the pur- poses ofcoding, analytical-synthetical transmission, recognition, or for some other goal. It islogical that limitationsimposed atthis lowest level ofspeech processing can be hardly corrected at higher levels in the mentioned complex systems for digitalprocessingofspeechsignals.Oneofthepossibledirectionstowardmakinga more complex speech model is its robustification regarding the presumed types of excitation signals, which is equivalent to the introduction of a class of nonlinear models and the corresponding criterion functions for parameter estimation. Comparedtothegeneralclassofnonlinearmodels,suchasvarioustypesofneural networks,thisclassofmodelspossessesgoodpropertiesofcontrolledcomplexity,a possibility to work in “online” mode, as well as a low information volume for the needs of efficient speech encoding and transmission. The material presented in this book dominantly relies upon the authors’ own results, previously verified through publishing in eminent international science journals. In order to arrive at a comprehensive insight into the subject of robust modeling of speech signal, this monograph has been extended by additional texts dedicated to general considerations of speech modeling, linear predictive analysis, androbustparameterestimation.Itisourbeliefthatthisbook'sreadabilityhasbeen thusimproved,andthatassuch,itmayservebothasaspecializedtextbookandasa monograph. The text of this book is divided into seven chapters. The first six chapters are dedicated to theoretical considerations, synthesis of robust algorithms, and their experimental evaluation, while the seventh chapter unifies the developed robust methodsinvariouspracticalproblemsofdigitalspeechprocessing.Thefirstchapter is dedicated to the general subject of speech modeling as a complex phenomenon v vi Preface with inherent nonlinearity and non-stationarity. The second chapter comprises a short review of basic procedures of linear speech prediction, from the autocorre- lationandcovariantmethodtodifferentversionsofpredictivelatticestructures.The intention of the third chapter is to make the reader acquainted with the basic postulatesofthegeneraltheoryofrobustparameterestimation,andespeciallywith the concept of minimax robust estimation. The fourth and fifth chapters, as the centralpartofthisbook,representanoverviewofthedevelopedrobustmethodsfor theestimationofspeechsignalmodelparametersinanon-recursive,aswellasina recursive form. The sixth chapter presents the results of one of the alternative approachestotheintroductionofanewclassofnonlinearalgorithmsforparameter estimationofspeechsignalmodels,basedonstatisticalpatternrecognition.Seventh chapter is dedicated to the most important applications of the developed robust procedures, such as the segmentation of speech signal, extraction of formant trajectories, and speech signal coding. The overall level of the text is suited to the readers with an adequate fore- knowledge in the probability theory and statistics, as well as in identification and estimationofsignalmodelparameters.Graduatesfromengineeringfacultieswillbe abletofollowthetextwithoutsignificantdifficulties,whileanadditionaleffortwill berequiredfromtheundergraduatesatthefinalyears,asiscustomaryforthiskind of texts. The methodological approach of this book makes it especially convenient forgraduatecoursesinthefieldscoveredbyit,suchasmodelingandestimationof model parameters of stochastic signals and systems, estimation of time-variable parameters of non-stationary models, digital signal processing, modeling, analysis, and processing of speech signals. It ensures a single place where one can access a numberofpracticalproblemstogetaninsightintothewholeprocedureofanalysis and synthesis of required properties, together with a comprehensive practical evaluation, which is the basis of the research and development in engineering. Because of that, this book is also useful for research institutions whose work is connected with the presented subject. TheauthorswishtoexpresstheirgratitudetothereviewersProf.Dr.MilanSavić andProf.Dr.JovanGolićfortheirusefulsuggestionsandadvices,aswellastoall of those who contributed to the publishing of this monograph. Let us mention at the end that the contributions to this book of all four authors are comparable and that we adopted an ordering of authors according to their academic ranks. Belgrade, Serbia Branko Kovačević 2014 Milan Milosavljević Mladen Veinović Milan Marković Contents 1 Speech Signal Modeling .. ..... .... .... .... .... .... ..... .... 1 1.1 Nature of Speech Signal... .... .... .... .... .... ..... .... 1 1.2 Linear Model of Speech Signal . .... .... .... .... ..... .... 4 2 Overview of Standard Methods . .... .... .... .... .... ..... .... 9 2.1 Autocorrelation Method ... .... .... .... .... .... ..... .... 11 2.2 Covariant Method... ..... .... .... .... .... .... ..... .... 12 2.3 Forward and Backward Prediction ... .... .... .... ..... .... 15 2.4 Lattice Filter... .... ..... .... .... .... .... .... ..... .... 17 2.5 Method of Minimization of Forward Prediction Error ..... .... 19 2.6 Method of Minimization of Backward Prediction Error .... .... 19 2.7 Method of Geometric Mean .... .... .... .... .... ..... .... 20 2.8 Method of Minimum ..... .... .... .... .... .... ..... .... 21 2.9 General Method .... ..... .... .... .... .... .... ..... .... 21 2.10 Method of Harmonic Mean .... .... .... .... .... ..... .... 21 2.11 Lattice-Covariant LP Method... .... .... .... .... ..... .... 22 2.12 Basic Properties of Partial Correlation Coefficient ... ..... .... 25 2.13 Equivalence of Discrete Model and Linear Prediction Model.... 25 2.14 Speech Synthesis Based on Linear Prediction Model. ..... .... 26 3 Fundamentals of Robust Parameter Estimation .... .... ..... .... 29 3.1 Principles of Robust Parameter Estimation. .... .... ..... .... 29 3.2 Robust Estimation of Signal Amplitude ... .... .... ..... .... 35 3.3 Fundamentals of Minimax Robust Estimation of Signal Amplitude. .... .... ..... .... .... .... .... .... ..... .... 40 3.4 Recursive Minimax Robust Algorithms for Signal Amplitude Estimation. .... .... ..... .... .... .... .... .... ..... .... 44 3.5 Statistical Models of Perturbations and Examples of Minimax Robust Estimator ... ..... .... .... .... .... .... ..... .... 51 3.6 Practical Aspects of Implementation of Robust Estimators.. .... 61 vii viii Contents 3.7 Robust Estimation of Parameters of Autoregressive Dynamic Signal Models.. .... ..... .... .... .... .... .... ..... .... 65 3.8 Non-recursive Minimax Robust Estimation Algorithms .... .... 69 3.9 Recursive Minimax Robust Estimation Algorithm ... ..... .... 75 3.10 Fundamentals of Robust Identification of Speech Signal Model .. .... ..... .... .... .... .... .... ..... .... 80 Appendix 1—Analysis of Asymptotic Properties of Non-recursive Minimax Robust Estimation of Signal Amplitude. .... .... ..... .... 84 Appendix 2—Analysis of Asymptotic Properties of Recursive Minimax Robust Estimation of Signal Amplitude. .... .... ..... .... 88 4 Robust Non-recursive AR Analysis of Speech Signal .... ..... .... 95 4.1 Robust Estimations of Parameters of Linear Regression Model... ..... .... .... .... .... .... ..... .... 96 4.2 Non-recursive Robust Estimation Procedure: RBLP Method .... 99 4.2.1 Newton Algorithm . .... .... .... .... .... ..... .... 100 4.2.2 Dutter Algorithm... .... .... .... .... .... ..... .... 101 4.2.3 Weighted Least Squares Algorithm. .... .... ..... .... 104 4.3 Comparison of Robust and Non-robust Estimation Algorithms .... .... ..... .... .... .... .... .... ..... .... 105 4.3.1 Analysis of the Estimation Error Variance ... ..... .... 106 4.3.2 Analysis of Estimation Shift.. .... .... .... ..... .... 110 4.4 Characteristics of M-Robust Estimation Procedure... ..... .... 111 4.4.1 Model Validity .... .... .... .... .... .... ..... .... 112 4.4.2 Stability. .... ..... .... .... .... .... .... ..... .... 112 4.4.3 Computational Complexity ... .... .... .... ..... .... 112 4.5 Experimental Analysis .... .... .... .... .... .... ..... .... 113 4.5.1 Test Signals Obtained by Filtering Train of Dirac Pulses .... .... .... .... .... .... ..... .... 113 4.5.2 Test Signals Obtained by Filtering of Glottal Excitation .... .... .... .... .... ..... .... 116 4.5.3 Natural Speech Signal... .... .... .... .... ..... .... 119 4.6 Discussion and Conclusion. .... .... .... .... .... ..... .... 123 5 Robust Recursive AR Analysis of Speech Signal.... .... ..... .... 125 5.1 Linear Regression Model for Recursive Parameter Estimation ... 126 5.2 Application of M-Estimation Robust Procedure: RRLS Method . .... ..... .... .... .... .... .... ..... .... 127 5.3 Robust Recursive Least-Squares Algorithm .... .... ..... .... 129 5.4 Adaptive Robust Recursive Estimation Algorithm ... ..... .... 132 5.5 Determination of Variable Forgetting Factor.... .... ..... .... 133 5.5.1 Approach Based on Discrimination Function . ..... .... 133 5.5.2 Approach Based on Generalized Prediction Error... .... 135 Contents ix 5.6 Experimental Analysis on Test Sinusoids.. .... .... ..... .... 136 5.6.1 Testing with Fixed Forgetting Factor ... .... ..... .... 137 5.6.2 Testing with Variable Forgetting Factor . .... ..... .... 137 5.6.3 Testing with Contaminated Additive Gaussian Noise .... 143 5.7 Experimental Analysis of Speech Signals.. .... .... ..... .... 145 5.7.1 Test Signals Obtained by Filtering a Train of Dirac Pulses .. .... ..... .... .... .... .... .... ..... .... 146 5.7.2 Test Signals Obtained by Filtering Glottal Excitation.... 147 5.7.3 Natural Speech Signal... .... .... .... .... ..... .... 149 5.8 Discussion and Conclusion. .... .... .... .... .... ..... .... 153 6 Robust Estimation Based on Pattern Recognition... .... ..... .... 155 6.1 Unsupervised Learning.... .... .... .... .... .... ..... .... 156 6.1.1 General Clustering Algorithms .... .... .... ..... .... 157 6.1.2 Frame-Based Methods... .... .... .... .... ..... .... 158 6.1.3 Quadratic Classifier with Sliding Training Set. ..... .... 161 6.2 Recursive Procedure Based on Pattern Recognition .. ..... .... 163 6.3 Application of Bhattacharyya Distance.... .... .... ..... .... 170 6.3.1 Bhattacharyya Distance.. .... .... .... .... ..... .... 172 6.4 Experimental Analysis .... .... .... .... .... .... ..... .... 174 6.4.1 Direct Evaluation .. .... .... .... .... .... ..... .... 174 6.4.2 Indirect Evaluation . .... .... .... .... .... ..... .... 177 6.5 Conclusion .... .... ..... .... .... .... .... .... ..... .... 183 7 Applications of Robust Estimators in Speech Signal Processing ........ 185 7.1 Segmentation of Speech Signal.. .... .... .... .... ..... .... 186 7.1.1 Basics of Modified Generalized Maximum Likelihood Algorithm ... ..... .... .... .... .... .... ..... .... 187 7.1.2 Robust Discriminant Function. .... .... .... ..... .... 190 7.1.3 Tests with Real Speech Signal .... .... .... ..... .... 191 7.1.4 Appendix 4: Robust MGLR Algorithm (RMGLR) .. .... 191 7.2 Separation of Formant Trajectories... .... .... .... ..... .... 195 7.2.1 Experimental Analysis... .... .... .... .... ..... .... 197 7.3 CELP Coder of Speech Signal.. .... .... .... .... ..... .... 200 7.3.1 LSP Parameters.... .... .... .... .... .... ..... .... 201 7.3.2 Distance Measure .. .... .... .... .... .... ..... .... 203 7.3.3 Linear Prediction Methods with Sample Selection .. .... 206 7.3.4 Experimental Analysis... .... .... .... .... ..... .... 207 References.... .... .... .... ..... .... .... .... .... .... ..... .... 213 Index .... .... .... .... .... ..... .... .... .... .... .... ..... .... 221 Abbrevations AEF Asymptotic efficiency AR Autoregressive model ARX Autoregressive with exogenous input model BHATT Bhattacharyya distance CELP Code-excited linear prediction CEUC c-mean classification algorithm CG Closed glottis CIQC Iterative quadratic classification algorithm CLP Covariant-based linear prediction CPDF Conditional PDF CR Cramer–Rao bound D Discrimination function EPR Extended prediction error FF Forgetting factor FFF Fixed forgetting factor FFT Fast Fourier transform k-NN k-nearest neighbors procedure LP Linear prediction LPAS Linear prediction with analysis-by-synthesis LS (LSQ) Least squares method LSP Line spectral pairs M Approximate maximum likelihood estimator MAR Mean absolute value criterion MGLR Modified general likelihood ratio algorithm ML Maximum likelihood estimation method OG Open glottis PDF Probability density function Q Quantized values of line spectral pairs QCSTS Quadratic classifier with sliding training set RBLP Robust batch processing linear prediction xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.