ebook img

Rigorous Polynomial Approximations and Applications PDF

195 Pages·2017·2.46 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Rigorous Polynomial Approximations and Applications

Rigorous Polynomial Approximations and Applications Mioara Maria Joldes To cite this version: Mioara Maria Joldes. Rigorous Polynomial Approximations and Applications. Other [cs.OH]. Ecole normale supérieure de lyon - ENS LYON, 2011. English. ￿NNT: 2011ENSL0655￿. ￿tel-00657843v2￿ HAL Id: tel-00657843 https://theses.hal.science/tel-00657843v2 Submitted on 27 Feb 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N◦d’ordre: N◦attribuéparlabibliothèque: ÉCOLE NORMALE SUPÉRIEURE DE LYON Laboratoire de l’Informatique du Parallélisme THÈSE présentéeetsoutenuepubliquementle26Septembre2011par Mioara JOLDES , pourl’obtentiondugradede Docteur de l’École Normale Supérieure de Lyon spécialité : Informatique autitredel’ÉcoleDoctoraledeMathématiquesetd’InformatiqueFondamentaledeLyon Approximations polynomiales rigoureuses et applications Directeursdethèse: Nicolas BRISEBARRE Jean-Michel MULLER Aprèsavisde: Didier HENRION Warwick TUCKER Devantlacommissiond’examenforméede: Frédéric BENHAMOU Nicolas BRISEBARRE Didier HENRION Jean-Michel MULLER Warwick TUCKER ForSoho,whereIbelong. Acknowledgements I cite G. Cantor, for saying that the art of proposing a question must be held of higher value than solvingitandexpressmydeepestgratitudeandappreciationformyadvisors. Nicolasfoundme∗ duringanexaminaMaster2courseatENS,andproposedtherightquestionforme. Althoughthe answerwasnotgivenduringmymaster,asinitiallythought,althoughthereweremomentswhen I wanted different questions, he encouraged me every day, he believed in me, he was always available when I needed his advice in scientific and non-scientific matters. His altruism when sharing his knowledge with me, his desire for perfection when carefully reviewing all my work, werealwaysastonishingandmotivatingforme. Thisthesis,andthenicetimeIhad,owesalotto his devotion, ideas, suggestions† and so good sense of humor (not the Romanians’ related jokes, though!). Jean-Michel always kept an experienced and kind eye over my work. I felt honored to haveassupervisorthebestexpertinComputerArithmetic: heansweredallmyrelatedquestions and he always made so good and often mediating suggestions‡. It was a great chance for me to have had advisors who guided my path, but let me make my own choices and find my own valuesandinterestsinresearch. Ithankthemforallthat,andforhavingmadeunedocteuroutof unechipie. Mercibeaucoup,NicolasetJean-Michel. IwanttothankFredericBenhamou,DidierHenrionandWarwickTuckerforhavingaccepted to participate in my jury, for their pertinent questions and useful suggestions. I would like to express my gratitude to the reviewers of this manuscript. I thank them for their hard work, for their understanding and availability regarding the schedule of this work. It seems that in what follows I will have the chance and the honor to work more with them. I think that they brought tremendousopportunitiesinmyyoungresearcherlifeandIthankthemforthatalso. Moreover,Iwouldliketothankmycollaborators: supnormandSollya(andbigbrothers)Sylvain and Christoph, for having helped me with their hard work, bright ideas and (endless, since I don’tgiveineither)debates;BogdanandFlorent,wholetmekeepintouchwithmyoldlove,the FPGAs;AlexandreandMarcforhavingsharedwithmethemagicofD-finitefunctions;Érik,Ioana and Micaela for their formalization efforts in our Coqapprox meetings; Serge for his unbelievable kindness. IwouldalsoliketothankthemembersoftheArenaireteamforhavingmademystaytherean unforgetable experience: my office mates Andy, Guillaume, Ivan and Xavier for having listened to all my usual bla-bla and for having accepted my bike in the office; Claude-Pierre (thanks a lot foryourworkfortheProjetRégionthatfinancedmyscholarship!),Damien(thanksforthebeauti- fulEuclideanLatticescoursethatledmetoArenaire!), Gilles(thanksforourshortbutextremely meaningfuldiscussions!), Guillaume(manythanksforyouradvicesandhelp!), Nathalie(thanks for often pointing me interesting conferences!), Nicolas L. (thanks for the fun I had teaching and joking with you!), Vincent (thanks for the 17 obsession!), and our assistants Damien and Séver- ine for their great help with les ordres de mission. I also thank Adrien, Christophe, Diep, Fabien, Eleonora, Nicolas Brunie, Jingyan, Adeline, Philippe, David and Laurent-Stéphane for their help ∗. unepioupiou †. Pasdecalendriersetderépétitions,quandmême! ‡. Someofuswouldbestilldebatingtoday,otherwise. 4 Acknowledgements inmyArenaireday-by-daylife. Then, I am very grateful to my external collaborators who helped and inspired me: Marius Cornea,JohnHarrison,AlexanderGoldsztejn,MarcusNeher,andmynewteamCAPAatUppsala. I would like to say a "pure" Multam fain! to my ENS Romanian mafia for being there for me, , for our coffees, lunches (sorry I always had to leave earlier!) and iesit la sca˘ri. I adored our non- , scientificandnotpoliticallycorrectdiscussionsandjokes. My thesis would not exist without the basis of knowledge I accumulated during my studies in Romania. I will always be grateful to my teachers there. Especially, I would like to thank OctavianCretnotonlyforhavingsentthee-mailannouncingthescholarshipsatENS,butalsofor , allhishardandfairworkindifficultandunfairtimes. IthankalsomyprofessorsAlinSuciu,Ioan GavreaandDumitruMirceaIvanwhoimpressedmystudentmindwiththeiruniqueintelligence, modestyandhumor. IwouldliketogivemyspecialthankstoBogdan(wemadeit,we’redoctors!) andmyfamily (parents,grand-parents,dearsisterOanaandDia). Theirtotalsupport,careandloveenabledme tocompletethiswork. IthankalsomycousinsCa˘linandClaudiafortheirhelpandsupportand longtriptoFrance. Last but not least I thank the ENS janitor who brought me the hot chocolate the night before mydefenseandmyfatherforhavingtaughtmethebeautyofmathematics. Theirsimplekindness keepsmegoingon. 4 Contents 1 Introduction 13 1.1 Introductiontorigorouspolynomialapproximations-outlineofthethesis . . . . . . 15 1.2 Computerarithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.3 IntervalArithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.4 Fromintervalarithmetictorigorouspolynomialapproximations . . . . . . . . . . . 36 1.4.1 Computingtheapproximationpolynomialbeforeboundingtheerror . . . . 37 1.4.2 Simultaneouslycomputingtheapproximationpolynomialandtheerror . . . 41 1.4.3 Practicalcomparisonofthedifferentmethods . . . . . . . . . . . . . . . . . . 42 1.5 Datastructuresforrigorouspolynomialapproximations . . . . . . . . . . . . . . . . 43 2 TaylorModels 45 2.1 BasicprinciplesofTaylorModels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.1.1 Definitionsandtheirambiguities . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.1.2 Boundingpolynomialswithintervalcoefficients . . . . . . . . . . . . . . . . . 48 2.2 TaylorModelswithAbsoluteRemainder . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.2.1 TaylorModelsforbasicfunctions . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.2.2 OperationswithTaylorModels . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.3 Theproblemofremovablediscontinuities–theneedforTaylorModelswithrelative remainder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2.3.1 TaylorModelswithrelativeremaindersforbasicfunctions . . . . . . . . . . . 65 2.3.2 OperationswithTaylorModelswithrelativeremainders . . . . . . . . . . . . 69 2.3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3 EfficientandAccurateComputationofUpperBoundsofApproximationErrors 83 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 3.2 Previouswork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 3.2.1 Numericalmethodsforsupremumnorms . . . . . . . . . . . . . . . . . . . . 86 3.2.2 Rigorousglobaloptimizationmethodsusingintervalarithmetic . . . . . . . . 86 3.2.3 Methodsthatevadethedependencyphenomenon . . . . . . . . . . . . . . . . 87 3.3 Computingasafeandguaranteedsupremumnorm . . . . . . . . . . . . . . . . . . . 88 3.3.1 Computing a validated supremum norm vs. validating a computed supre- mumnorm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.3.2 Schemeofthealgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 3.3.3 Validatinganupperboundon(cid:107)ε(cid:107) forabsoluteerrorproblemsε = p−f . . 89 ∞ 3.3.4 Caseoffailureofthealgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 3.3.5 Relativeerrorproblemsε = p/f −1withoutremovablediscontinuities . . . 91 3.3.6 Handlingremovablediscontinuities . . . . . . . . . . . . . . . . . . . . . . . . 92 6 Contents 3.4 ObtainingtheintermediatepolynomialT anditsremainder . . . . . . . . . . . . . . 93 3.5 Certificationandformalproof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 3.5.1 FormalizingTaylormodels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.5.2 Formalizingpolynomialnonnegativity . . . . . . . . . . . . . . . . . . . . . . 95 3.6 Experimentalresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4 ChebyshevModels 105 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.1.1 Previousworksforusingtighterpolynomialapproximationsinthecontext ofrigorouscomputing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.2 Preliminary theoretical statements about Chebyshev series and Chebyshev inter- polants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 4.2.1 SomebasicfactsaboutChebyshevpolynomials . . . . . . . . . . . . . . . . . 107 4.2.2 ChebyshevSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.2.3 DomainsofconvergenceofTaylorversusChebyshevseries . . . . . . . . . . 113 4.3 ChebyshevInterpolants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4.3.1 Interpolationpolynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4.4 Summaryofformulas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 4.5 ChebyshevModels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 4.5.1 ChebyshevModelsforbasicfunctions . . . . . . . . . . . . . . . . . . . . . . . 129 4.5.2 OperationswithChebyshevmodels . . . . . . . . . . . . . . . . . . . . . . . . 131 4.5.3 Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 4.5.4 Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 4.5.5 Composition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 4.6 Experimentalresultsanddiscussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 4.7 Conclusionandfuturework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 5 RigorousUniformApproximationofD-finiteFunctions 147 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 5.1.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 5.1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 5.2 ChebyshevExpansionsofD-finiteFunctions . . . . . . . . . . . . . . . . . . . . . . . 149 5.2.1 ChebyshevSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 5.2.2 TheChebyshevRecurrenceRelation . . . . . . . . . . . . . . . . . . . . . . . . 150 5.2.3 SolutionsoftheChebyshevRecurrence . . . . . . . . . . . . . . . . . . . . . . 152 5.2.4 ConvergentandDivergentSolutions . . . . . . . . . . . . . . . . . . . . . . . . 154 5.3 ComputingtheCoefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 5.3.1 Clenshaw’sAlgorithmRevisited . . . . . . . . . . . . . . . . . . . . . . . . . . 156 5.3.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 5.3.3 Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 5.4 ChebyshevExpansionsofRationalFunctions . . . . . . . . . . . . . . . . . . . . . . . 162 5.4.1 RecurrenceandExplicitExpression . . . . . . . . . . . . . . . . . . . . . . . . 163 5.4.2 Boundingthetruncationerror . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 5.4.3 Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 5.5 ErrorBounds/Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 5.6 Discussionandfuturework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 5.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 6 Contents 7 6 Automatic Generation of Polynomial-based Hardware Architectures for Function Eval- uation 175 6.1 Introductionandmotivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 6.1.1 Relatedworkandcontributions . . . . . . . . . . . . . . . . . . . . . . . . . . 176 6.1.2 RelevantfeaturesofrecentFPGAs . . . . . . . . . . . . . . . . . . . . . . . . . 177 6.2 Functionevaluationbypolynomialapproximation . . . . . . . . . . . . . . . . . . . . 177 6.2.1 Rangereduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 6.2.2 Polynomialapproximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 6.2.3 Polynomialevaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 6.2.4 Accuracyanderroranalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 6.2.5 ParameterspaceexplorationfortheFPGAtarget . . . . . . . . . . . . . . . . 182 6.3 Examplesandcomparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 7 List of Figures 1.1 Approximationerrorε = f −pforeachRPAgiveninExample1.1.3. . . . . . . . . . 18 1.2 Approximationerrorε = f −pforeachRPAgiveninExample1.1.4. . . . . . . . . . 18 1.3 Approximationerrorε = f −pforeachRPAgiveninExample1.1.5. . . . . . . . . . 19 1.4 Approximationerrorε = f −pfortheRPAgiveninExample1.1.6. . . . . . . . . . . 20 1.5 Valuesofulp(x)around1,assumingradix2andprecisionp. . . . . . . . . . . . . . . . . 25 2.1 ATM(P,[−d,d])oforder2forexp(x),overI = [−1, 1]. P(x) = 1+x+0.5x2 and 2 2 d = 0.035. We can view a TM as a a tube around the function in (a). The actual error R (x) = exp(x)−(1+x+0.5x2)isplottedin(b). . . . . . . . . . . . . . . . . . . . . 46 2 3.1 Approximationerrorinacasetypicalforalibm . . . . . . . . . . . . . . . . . . . . . 84 4.1 DomainofconvergenceofTaylorandChebyshevseriesforf. . . . . . . . . . . . . . 113 z+z−1 4.2 Joukowskytransformw(z) = mapsC(0,ρ)andC(0,ρ−1)respectivelytoε . 115 ρ 2 1 4.3 The dots are the errors log (cid:107)f −f (cid:107) in function of n, where f(x) = is 10 n ∞ 1+25x2 the Runge function and f is the truncated Chebyshev series of degree n. The line n √ 1+ 26 hasslopelog ρ∗,ρ∗ = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 10 5 4.4 Certifiedplotoff(x) = 2π−2xasin((cos0.797)sin(π/x))+0.0331x−2.097forx ∈ I = [3,64]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 5.1 NewtonpolygonforChebyshevrecurrence. . . . . . . . . . . . . . . . . . . . . . . . . 155 5.2 ApproximationerrorsforExample5.7.1. . . . . . . . . . . . . . . . . . . . . . . . . . . 172 5.3 ApproximationerrorsforExample5.7.2. . . . . . . . . . . . . . . . . . . . . . . . . . . 172 5.4 ApproximationerrorsforExample5.7.3. . . . . . . . . . . . . . . . . . . . . . . . . . . 172 5.5 CertifiedplotsforExample5.7.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 6.1 Automatedimplementationflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 6.2 Alignmentofthemonomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 6.3 Thefunctionevaluationarchitecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Description:
Then the result of the division is the union of two intervals: 1/[y, y]=[−∞,1/y] the image of functions such as exponential and square root or squaring.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.