ebook img

RFID Technologies for Internet of Things PDF

100 Pages·2016·1.93 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview RFID Technologies for Internet of Things

Wireless Networks Min Chen Shigang Chen RFID Technologies for Internet of Things Wireless Networks Serieseditor Xuemin(Sherman)Shen UniversityofWaterloo,Waterloo,Ontario,Canada Moreinformationaboutthisseriesathttp://www.springer.com/series/14180 Min Chen • Shigang Chen RFID Technologies for Internet of Things 123 MinChen ShigangChen DepartmentofComputerandInformation DepartmentofComputerand UniversityofFlorida InformationScience Gainesville,FL,USA UniversityofFlorida Gainesville,FL,USA This work is supported in part by the National Science Foundation under grants CNS-1409797 and STC-1562485. ISSN2366-1186 ISSN2366-1445 (electronic) WirelessNetworks ISBN978-3-319-47354-3 ISBN978-3-319-47355-0 (eBook) DOI10.1007/978-3-319-47355-0 LibraryofCongressControlNumber:2016954315 ©SpringerInternationalPublishingAG2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Contents 1 Introduction ................................................................... 1 1.1 InternetofThings........................................................ 1 1.2 RFIDTechnologies ...................................................... 1 1.3 TagSearchProblem...................................................... 2 1.4 AnonymousRFIDAuthentication ...................................... 3 1.5 IdentificationofNetworkedTags........................................ 4 1.6 OutlineoftheBook...................................................... 5 References...................................................................... 5 2 EfficientTagSearchinLargeRFIDSystems.............................. 9 2.1 SystemModelandProblemStatement ................................. 9 2.1.1 SystemModel .................................................. 9 2.1.2 TimeSlots ...................................................... 10 2.1.3 ProblemStatement ............................................. 10 2.2 RelatedWork............................................................. 11 2.2.1 TagIdentification............................................... 11 2.2.2 PollingProtocol ................................................ 13 2.2.3 CATSProtocol.................................................. 13 2.3 AFastTagSearchProtocolBasedonFilteringVectors................ 14 2.3.1 Motivation ...................................................... 14 2.3.2 BloomFilter .................................................... 15 2.3.3 FilteringVectors................................................ 15 2.3.4 IterativeUseofFilteringVectors.............................. 17 2.3.5 GeneralizedApproach ......................................... 18 2.3.6 Valuesofm ..................................................... 19 i 2.3.7 IterativeTagSearchProtocol .................................. 22 2.3.8 CardinalityEstimation ......................................... 23 2.3.9 AdditionalFilteringVectors ................................... 24 2.3.10 HardwareRequirement......................................... 24 v vi Contents 2.4 ITSPoverNoisyChannel................................................ 25 2.4.1 ITSPwithNoiseonForwardLink............................. 25 2.4.2 ITSPwithNoiseonReverseLink............................. 26 2.5 PerformanceEvaluation ................................................. 29 2.5.1 PerformanceMetric ............................................ 29 2.5.2 PerformanceComparison...................................... 29 2.5.3 False-PositiveRatio ........................................... 31 2.5.4 PerformanceEvaluationUnderChannelError................ 32 2.6 Summary ................................................................. 37 References...................................................................... 37 3 LightweightAnonymousRFIDAuthentication ........................... 39 3.1 SystemModelandSecurityModel...................................... 39 3.1.1 SystemModel .................................................. 39 3.1.2 SecurityModel ................................................. 40 3.2 RelatedWork............................................................. 42 3.2.1 Non-tree-BasedProtocols...................................... 42 3.2.2 Tree-BasedProtocols........................................... 43 3.3 AStrawmanSolution.................................................... 43 3.3.1 Motivation ...................................................... 43 3.3.2 AStrawmanSolution .......................................... 44 3.4 DynamicToken-BasedAuthenticationProtocol........................ 45 3.4.1 Motivation ...................................................... 45 3.4.2 Overview........................................................ 46 3.4.3 InitializationPhase............................................. 46 3.4.4 AuthenticationPhase........................................... 47 3.4.5 UpdatingPhase................................................. 47 3.4.6 RandomnessAnalysis.......................................... 49 3.4.7 Discussion ...................................................... 52 3.4.8 PotentialProblemsofTAP..................................... 53 3.5 EnhancedDynamicToken-BasedAuthenticationProtocol............ 53 3.5.1 ResistanceAgainstDesynchronizationandReplayAttacks . 53 3.5.2 ResolvingHashCollisions..................................... 55 3.5.3 Discussion ...................................................... 58 3.6 SecurityAnalysis......................................................... 59 3.7 NumericalResults........................................................ 60 3.7.1 EffectivenessofMulti-HashScheme.......................... 60 3.7.2 Token-LevelRandomness...................................... 61 3.7.3 Bit-LevelRandomness......................................... 61 3.8 Summary ................................................................. 64 References...................................................................... 64 4 IdentifyingState-FreeNetworkedTags .................................... 67 4.1 SystemModelandProblemStatement ................................. 67 4.1.1 NetworkedTagSystem......................................... 67 4.1.2 ProblemStatement ............................................. 68 Contents vii 4.1.3 State-FreeNetworkedTags .................................... 68 4.1.4 SystemModel .................................................. 69 4.2 RelatedWork............................................................. 70 4.3 Contention-BasedIDCollectionProtocolforNetworked TagSystems.............................................................. 71 4.3.1 Motivation ...................................................... 71 4.3.2 RequestBroadcastProtocol.................................... 72 4.3.3 IDCollectionProtocol ......................................... 74 4.4 SerializedIDCollectionProtocol....................................... 75 4.4.1 Motivation ...................................................... 75 4.4.2 Overview........................................................ 75 4.4.3 BiasedEnergyConsumption................................... 76 4.4.4 SerialNumbers................................................. 77 4.4.5 ParentSelection ................................................ 78 4.4.6 SerializationatTierTwo....................................... 79 4.4.7 RecursiveSerialization......................................... 80 4.4.8 FrameSize...................................................... 82 4.4.9 LoadFactorPerTag............................................ 83 4.5 ImprovingTimeEfficiencyofSICP..................................... 85 4.5.1 RequestAggregation........................................... 85 4.5.2 ID-TransmissionPipelining.................................... 86 4.6 Evaluation ................................................................ 89 4.6.1 SimulationSetup ............................................... 89 4.6.2 ChildrenDegreeandLoadFactor ............................. 90 4.6.3 PerformanceComparison...................................... 91 4.6.4 PerformanceTradeoffforSICPandp-SICP.................. 92 4.6.5 Time-EfficiencyComparisonofSCIPandp-SICP........... 93 4.7 Summary ................................................................. 93 References...................................................................... 95 Chapter 1 Introduction 1.1 InternetofThings Internet of Things (IoT) [26] is a new networking paradigm for cyber-physical systemsthatallowphysicalobjectstocollectandexchangedata.IntheIoT,physical objects and cyber-agents can be sensed and controlled remotely across existing network infrastructure, which enables the integration between the physical world andcomputer-basedsystemsandthereforeextendstheInternetintotherealworld. IoT can find numerous applications in smart housing, environmental monitoring, medical and health care systems, agriculture, transportation, etc. Because of its significant application potential, IoT has attracted a lot of attention from both academicresearchandindustrialdevelopment. 1.2 RFIDTechnologies Generally,everyphysicalobjectintheIoTneedstobeaugmentedwithsomeauto- ID technologies such that the object can be uniquely identified. Radio Frequency Identification (RFID) [12] is one of the most widely used auto-ID technologies. RFID technologies integrate simple communication, storage, and computation components in attachable tags that can communicate with readers wirelessly over a distance. Therefore, RFID technologies provide a simple and cheap way of connecting physical objects to the IoT—as long as an object carries a tag, it can beidentifiedandtrackedbyreaders. RFID technologies have been pervasively used in numerous applications, such asinventorymanagement,supplychain,producttracking,transportation,logistics, andtollcollection[1,3,8,10,16–19,21–24,27,29,32,35,37–39].Accordingtoa marketresearchconductedbyIDTechEx[30],themarketsizeofRFIDhasreached $8.89 billion in 2014, and is projected to rise to $27.31 billion after a decade. ©SpringerInternationalPublishingAG2016 1 M.Chen,S.Chen,RFIDTechnologiesforInternetofThings, WirelessNetworks,DOI10.1007/978-3-319-47355-0_1 2 1 Introduction Typically,anRFIDsystemconsistsofalargenumberofRFIDtags,oneormultiple RFIDreaders,andabackendserver.Today’scommercialtagscanbeclassifiedinto three categories: (1) passive tags, which are powered by the radio wave from an RFID reader and communicate with the reader through backscattering; (2) active tags, which are powered by their own energy sources; and (3) semi-active tags, which use internal energy sources to power their circuits while communicating withthereaderthroughbackscattering.AsspecifiedinEPCClass-1Gen-2(C1G2) protocol [12], each tag has a unique ID identifying the object it is attached to. The object can be a vehicle, a product in a warehouse, an e-passport that carries personal information, a medical device that records a patient’s health data, or any other physical object in IoT. The integrated transceiver of each tag enables it to transmitandreceiveradiosignals.Therefore,areadercancommunicatewithatag over a distance as long as the tag is located in its interrogation area. However, communications amongst RFID tags are generally not feasible due to their low transmission power. The emerging networked tags [13, 14] bring a fundamental enhancement to RFID tags by enabling tags to communicate with each other. The networked tags are integrated with energy-harvesting components that can harvest energyfromsurroundingenvironment. ThewidespreaduseofRFIDtagsinIoTbringsaboutnewissuesonefficiency, security, and privacy that are quite different from those in traditional networking systems[7,36].Thisbookpresentsseveralstate-of-the-artRFIDprotocolsthataim atimprovingtheefficiency,security,andprivacyoftheIoT. 1.3 TagSearch Problem GivenasetofIDsforthewantedtags,thetagsearchproblemistoidentifywhich wanted tags are existing in an RFID system [9, 11]. Note that there may exist other tags that do not belong to the set. As an example, a manufacturer finds that someofitsproducts,whichhavebeendistributedtodifferentwarehouses,maybe defective,andwantstorecallthemforfurtherinspection.Sinceeachproductinthe IoTcarriesatag,andthemanufacturerknowsalltagIDsofthosedefectiveproducts, itcanperformtagsearchineachwarehousetoidentifytheproductsthatneedtobe recalled. To meet the stringent delay requirements of real-world applications, time efficiency is a critical performance metric for the RFID tag search problem. For example, it is highly desirable to make the search quick in a busy warehouse as lengthy searching process may interfere with other activities that move things in andoutofthewarehouse.TheonlypriorworkstudyingthisproblemiscalledCATS [40],which,however,doesnotworkwellundersomecommonconditions(e.g.,if the size of the wanted set is much larger than the number of tags in the coverage areaofthereader). We present a fast tag search method based on a new technique called filtering vectors. A filtering vector is a compact one-dimension bit array constructed from tagIDs,whichcanbeusedforfilteringunwantedtags.Usingthefilteringvectors, 1.4 AnonymousRFIDAuthentication 3 we design, analyze, and evaluate a novel iterative tag search protocol, which progressively improves the accuracy of search result and reduces the time of each iteration to a minimum by using the information learned from previous iterations. Given an accuracy requirement, the iterative protocol will terminate after the searchresultmeetstheaccuracyrequirement.Weshowthatourprotocolperforms much better than the CATS protocol and other alternatives used for comparison. Inaddition,ourprotocolcanbeextendedtoworkundernoisychannelwithamodest increaseinexecutiontime. 1.4 AnonymousRFIDAuthentication The proliferation of RFID tags in their traditional ways makes their carriers trackable. Should future tags penetrate into everyday products in the IoT and be carriedaround(oftentimesunknowingly),people’sprivacywouldbecomeaserious concern. A typical tag will automatically transmit its ID in response to the query from a nearby reader. If we carry tags in our pockets or by our cars, these tags will give off their IDs to any readers that query them, allowing others to track us. As an example, for a person whose car carries a tag (automatic toll payment [35] ortaggedplate[34]),hemaybeunknowinglytrackedoveryearsbytollboothsor others who install readers at locations of interest to learn when and where he has been.Toprotecttheprivacyoftagcarriers,weneedtoinventwaysofkeepingthe usefulnessoftagswhiledoingsoanonymously. Many RFID applications such as toll payment require authentication. A reader will accept a tag’s information only after authenticating the tag and vice versa. Anonymous authentication should prohibit the transmission of any identifying information, such as tag ID, key identifier, or any fixed number that may be used for identification purpose. As a result, there comes the challenge that how can a legitimate reader efficiently identify the right key for authentication without any identifyinginformationofthetag? Theimportanceandchallengeofanonymousauthenticationattractmuchatten- tionfromtheRFIDresearchcommunity.Manyanonymousauthenticationprotocols havebeendesigned.However,wewillshowthatallpriorworkhassomepotential problems,eitherincurringhighcomputationorcommunicationoverhead,orhaving security or functional concern. Moreover, most prior work, if not all, employs cryptographic hash functions, which requires considerable hardware [2], to ran- domizeauthenticationdatainordertomakethetagsuntrackable.Thehighhardware requirementmakesthemnotsuitedforlow-costtagswithlimitedhardwareresource. Hence,designinganonymousauthenticationprotocolsforlow-costtagsremainsan openandchallengingproblem[4]. In our design, we make a fundamental shift from the traditional paradigm for anonymous RFID authentication [5]. First, we release the resource-constrained RFID tags from implementing any complicated functions (e.g., cryptographic hashes). Since the readers are not needed in a large quantity as tags do, they

Description:
This book introduces applications of RFID on the Internet of things, under the emerging technologies for tag search, anonymous RFID authentication, and identification of networked tags. A new technique called filtering vector (a compact data structure that encodes tag IDs) is proposed to enable tag
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.