Table Of ContentRF POWER AMPLIFIERS FOR MOBILE COMMUNICATIONS
ANALOG CIRCUITS AND SIGNAL PROCESSING SERIES
Consulting Editor: Mohammed Ismail. Ohio State University
Related Titles:
IQ CALIBRATION TECHNIQUES FOR CMOS RADIO TRANCEIVERS
Chen, Sao-Jie, Hsieh, Yong-Hsiang
ISBN: 1-4020-5082-8
CMOS CURRENT-MODE CIRCUITS FOR DATA COMMUNICATIONS
Yuan, Fei
ISBN: 0-387-29758-8
ADVANCED DESIGN TECHNIQUES FOR RF POWER AMPLIFIERS
Rudiakova, A.N., Krizhanovski, V.
ISBN 1-4020-4638-3
CMOS CASCADE SIGMA-DELTA MODULATORS FOR SENSORS AND TELECOM
del Río, R., Medeiro, F., Pérez-Verdú, B., de la Rosa, J.M., Rodríguez-Vázquez, A.
ISBN 1-4020-4775-4
Titles in former series International Series in Engineering and Computer Science:
SIGMA DELTA A/D CONVERSION FOR SIGNAL CONDITIONING
Philips, K., van Roermund, A.H.M.
Vol. 874, ISBN 1-4020-4679-0
CALIBRATION TECHNIQUES IN NYQUIST A/D CONVERTERS
van der Ploeg, H., Nauta, B.
Vol. 873, ISBN 1-4020-4634-0
ADAPTIVE TECHNIQUES FOR MIXED SIGNAL SYSTEM ON CHIP
Fayed, A., Ismail, M.
Vol. 872, ISBN 0-387-32154-3
WIDE-BANDWIDTH HIGH-DYNAMIC RANGE D/A CONVERTERS
Doris, Konstantinos, van Roermund, Arthur, Leenaerts, Domine
Vol. 871 ISBN: 0-387-30415-0
METHODOLOGY FOR THE DIGITAL CALIBRATION OF ANALOG CIRCUITS AND
SYSTEMS: WITH CASE STUDIES
Pastre, Marc, Kayal, Maher
Vol. 870, ISBN: 1-4020-4252-3
HIGH-SPEED PHOTODIODES IN STANDARD CMOS TECHNOLOGY
Radovanovic, Sasa, Annema, Anne-Johan, Nauta, Bram
Vol. 869, ISBN: 0-387-28591-1
LOW-POWER LOW-VOLTAGE SIGMA-DELTA MODULATORS IN NANOMETER CMOS
Yao, Libin, Steyaert, Michiel, Sansen, Willy
Vol. 868, ISBN: 1-4020-4139-X
DESIGN OF VERY HIGH-FREQUENCY MULTIRATE SWITCHED-CAPACITOR
CIRCUITS
U, Seng Pan, Martins, Rui Paulo, Epifânio da Franca, José
Vol. 867, ISBN: 0-387-26121-4
DYNAMIC CHARACTERISATION OF ANALOGUE-TO-DIGITAL CONVERTERS
Dallet, Dominique; Machado da Silva, José (Eds.)
Vol. 860, ISBN: 0-387-25902-3
ANALOG DESIGN ESSENTIALS
Sansen, Willy
Vol. 859, ISBN: 0-387-25746-2
DESIGN OF WIRELESS AUTONOMOUS DATALOGGER IC'S
Claes and Sansen
Vol. 854, ISBN: 1-4020-3208-0
MATCHING PROPERTIES OF DEEP SUB-MICRON MOS TRANSISTORS
Croon, Sansen, Maes
Vol. 851, ISBN: 0-387-24314-3
LNA-ESD CO-DESIGN FOR FULLY INTEGRATED CMOS WIRELESS RECEIVERS
Leroux and Steyaert
Vol. 843, ISBN: 1-4020-3190-4
SYSTEMATIC MODELING AND ANALYSIS OF TELECOM FRONTENDS AND THEIR
BUILDING BLOCKS
Vanassche, Gielen, Sansen
Vol. 842, ISBN: 1-4020-3173-4
LOW-POWER DEEP SUB-MICRON CMOS LOGIC SUB-THRESHOLD CURRENT
REDUCTION
van der Meer, van Staveren, van Roermund
Vol. 841, ISBN: 1-4020-2848-2
WIDEBAND LOW NOISE AMPLIFIERS EXPLOITING THERMAL NOISE
CANCELLATION
Bruccoleri, Klumperink, Nauta
Vol. 840, ISBN: 1-4020-3187-4
RF POWER AMPLIFIERS FOR
MOBILE COMMUNICATIONS
by
Patrick Reynaert
Katholieke Universiteit Leuven, Belgium
and
Michiel Steyaert
Katholieke Universiteit Leuven, Belgium
AC.I.P. Catalogue record for this book is available from the Library of Congress.
ISBN-10 1-4020-5116-6 (HB)
ISBN-13 978-1-4020-5116-6 (HB)
ISBN-10 1-4020-5117-4 (e-book)
ISBN-13 978-1-4020-5117-3 (e-book)
Published by Springer,
P.O. Box 17, 3300 AADordrecht, The Netherlands.
www.springer.com
Printed on acid-free paper
All Rights Reserved
© 2006 Springer
No part of this work may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, microfilming, recording
or otherwise, without written permission from the Publisher, with the exception
of any material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work.
Printed in the Netherlands.
Contents
Preface ix
1. INTRODUCTION 1
1.1 WirelessCommunication 1
1.2 CMOSTechnologyandScaling 2
1.2.1 Moore’sLaw 2
1.2.2 RF-CMOS:MooremeetsMarconi 3
1.3 TheResearchWork 4
1.4 OutlineoftheWork 6
2. MOBILECOMMUNICATIONSYSTEMS
ANDPOWERAMPLIFICATION 9
2.1 Introduction 9
2.2 MobileCommunicationSystems 9
2.2.1 ModulatedBandpassSignals 10
2.2.2 DigitalModulation 13
2.2.3 ProbabilityDensityFunctionoftheEnvelopeSignal 15
2.3 SomeAspectsofPowerAmplification 16
2.3.1 OutputPower 16
2.3.2 PeakOutputPowerandCrestFactor 18
2.3.3 InputPowerandPowerGain 20
2.3.4 Efficiency 20
2.3.5 EfficiencyandModulatedSignals 23
2.3.6 PowerControl 24
2.3.7 Linearity 26
2.3.8 Inductors,CapacitorsandQualityFactor 27
2.4 PowerAmplifierClassification 30
2.4.1 ClassA 30
v
vi RFPOWERAMPLIFIERSFORMOBILECOMMUNICATIONS
2.4.2 ReducedConductionAngle: ClassAB,BandC 33
2.4.3 SaturatedClassA 40
2.4.4 HarmonicTuningforImprovedEfficiency: ClassF 44
2.4.5 SwitchingAmplifiers 48
2.4.6 ClassD 49
2.4.7 ClassE 51
2.4.8 Reliability 55
2.5 EfficiencyandLinearity 58
2.5.1 EfficiencyImprovementofLinearAmplifiers 60
2.5.2 LinearizationofNonlinearAmplifiers 62
2.6 Conclusion 64
3. ANALYSISANDDESIGNOFTHE
CLASSEPOWERAMPLIFIERINCMOS 65
3.1 Introduction 65
3.2 ATheoreticalStudyoftheClassEAmplifier 65
3.2.1 TheClassERequirements 65
3.2.2 ExistingMethodstoSolvetheClassEEquations 68
3.2.3 AState-SpaceModeloftheClassEPowerAmplifier 69
3.2.4 LimitationsoftheState-SpaceApproach 74
3.3 DesignoftheClassEAmplifierinCMOS 75
3.3.1 DesignoftheLoadResistor 75
3.3.2 DesignoftheDC-feedInductance 76
3.3.3 DesignofthenMOSswitch 80
3.3.4 TechnologyScaling 84
3.3.5 DeviceStacking 87
3.3.6 IncreasingtheOperatingFrequency 92
3.3.7 DeviationfromClassE: ClassBE 93
3.4 CMOSLayoutAspects 97
3.4.1 IntegratedInductors 97
3.4.2 DecouplingandBondwires 103
3.5 Conclusion 109
4. IMPEDANCETRANSFORMATION
ANDPOWERCOMBINATION 111
4.1 Introduction 111
4.2 L-matchImpedanceTransformation 111
4.2.1 BasicEquations 112
4.2.2 InductorLossandEfficiency 114
Contents vii
4.3 PowerCombination 118
4.3.1 BasicEquations 119
4.3.2 InductorLossandEfficiency 122
4.3.3 MultiSectionLattice-TypeLCBalun 126
4.3.4 PowerControl 128
4.3.5 MultiSectionLCBalunwithNon-IdenticalSections 131
4.3.6 MergingtheClassEAmplifierandtheLCBalun 132
4.4 Conclusion 132
5. POLARMODULATION 135
5.1 Introduction 135
5.2 ThePolarModulationArchitecture 135
5.2.1 BasicEquations 135
5.2.2 EnvelopeEliminationandRestoration 137
5.2.3 InfluenceoftheDriverStagesontheOverallEfficiency 139
5.2.4 ImplementationoftheAmplitudeModulator 140
5.3 DistortioninaPolarModulatedPowerAmplifier 149
5.3.1 NonlinearPolarModulatedPowerAmplifierModels 149
5.3.2 Feedforward 151
5.3.3 Nonlinearon-resistance 155
5.3.4 Nonlineardrain-bulkjunctioncapacitance 157
5.3.5 DifferentialDelay 158
5.3.6 EnvelopeFiltering 159
5.3.7 InjectionofthePhaseSignal 166
5.3.8 LinearityImprovementTechniques 166
5.4 PowerCombinationandPolarModulation 167
5.5 FullDigitalLinearization 170
5.5.1 Asingle-bitRFD-to-A 170
5.5.2 TheLattice-typeLCbalunasamulti-bitRFD-to-A 172
5.6 Conclusion 174
6. ACMOSPOWERAMPLIFIERFORGSM-EDGE 177
6.1 Introduction 177
6.2 TheEDGESystem 178
6.2.1 EnhancedDataratesforGSMEvolution 178
6.2.2 GenerationoftheEDGESignal 179
6.2.3 EDGETransmitterLinearityRequirements 183
6.2.4 EDGETransmitterOutputPowerRequirements 185
6.3 APolarModulatedPowerAmplifierforEDGE 185
viii RFPOWERAMPLIFIERSFORMOBILECOMMUNICATIONS
6.3.1 Architecture 186
6.3.2 Distortion 187
6.4 CircuitImplementation 192
6.4.1 DesignoftheRFamplifier 192
6.4.2 DesignoftheLinearAmplitudeModulator 196
6.4.3 LayoutAspects 199
6.5 Measurements 199
6.5.1 MeasurementSetup 199
6.5.2 ConstantEnvelopeMeasurements 201
6.5.3 AM-AMandAM-PMDistortionMeasurement 202
6.5.4 EDGEMeasurements 204
6.5.5 16-QAMModulationandTwo-ToneTest 209
6.6 ArchitecturalImprovements 210
6.7 ComparisonwithOtherEDGESolutions 212
6.8 Conclusion 213
7. ACMOSPOWERAMPLIFIERFORBLUETOOTH 215
7.1 Introduction 215
7.2 TheBluetoothSystem 215
7.2.1 Modulation 216
7.2.2 PowerAmplifierRequirements 217
7.2.3 SpectralPurityandSpuriousEmissions 217
7.3 CircuitImplementation 218
7.4 LayoutAspects 220
7.5 Measurements 222
7.5.1 OutputPowerandEfficiency 222
7.5.2 BluetoothMeasurements 224
7.6 ComparisonwithOtherWork 225
7.7 Conclusion 227
8. CONCLUSIONS 231
8.1 MainContributionsandAchievements 231
8.2 Epilogue 233
ListofAbbreviationsandSymbols 235
References 239
Index 249
Preface
Since the early nineties, mobile communication systems have entered our
daily life. The main reason for this unprecedented wireless revolution, is the
high integration level that can be achieved with CMOS. This allowed the in-
tegrationofenormousamountsofdigitalfunctionalityononesinglechip. As
such,itbecamefeasibletointroducedigitalcodinganddigitalsignalprocess-
inginwirelesscommunicationsystemswhichresultedinthepowerfulmobile
networks of today. Another reason for the successful wireless development,
is the low cost of the user equipment which in turn is due to the low cost of
CMOS.
Theevolutionofmobilecommunicationsystemscontinuesandtoday,tele-
phony,television,internet,e-mail,radiobroadcast,...areallbeingmergedto-
gether. Theyhavebecomeservices,ratherthanstand-alonesystems,thatusers
canaccessthroughonesinglemobiledevice. Puttingallthisfunctionalityinto
one small mobile device, at a reasonable cost, requires a higher integration
level. Forthecomfortoftheuser,italsorequiresanincreasedbatterylifetime
andthusalowpowerconsumption.
Mobilephonesandwirelessnetworkequipmentbothrequireapowerampli-
fiertoamplifytheradiosignalbeforeitcanbetransmittedthroughtheantenna.
Thepoweramplifiershouldamplifytheradiosignaltothedesiredoutputlevel,
asaccuratelyaspossible,butwithoutconsumingtoomuchpoweritselfasthis
wouldreducethebatterylifetime. Inotherwords, besidestherequiredoutput
power, the power amplifier should have sufficient linearity and a high effi-
ciency.
The overall goal of this work is to provide circuit design techniques that
allow the reader to design a power amplifier that (1) meets the output power
and linearity requirements of a mobile communication system, (2) has a high
efficiency and gain, (3) is integrated in CMOS and (4) requires no expensive
off-chip components. To achieve this goal, a theoretical foundation is devel-
oped first. It investigates the consequences of CMOS integration with respect
ix