RF and Microwave Power Amplifier Design Andrei Grebennikov M/A-COM,Ireland McGraw-Hill NewYork Chicago SanFrancisco Lisbon London Madrid MexicoCity Milan NewDelhi SanJuan Seoul Singapore Sydney Toronto i LibraryofCongressCataloging-in-PublicationData Grebennikov,Andrei,date. RFandmicrowavepoweramplifierdesign / AndreiGrebennikov. p. cm. Includesbibliographicalreferencesandindex. ISBN0-07-144493-9(alk.paper) 1. Poweramplifiers. 2. Microwaveamplifiers. I. Title. TK7871.58.P6G72 2004 621.39(cid:1)5—dc22 2004057908 Copyright(cid:2)c 2005byTheMcGraw-HillCompanies,Inc.Allrightsre- served. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publi- cationmaybereproducedordistributedinanyformorbyanymeans, orstoredinadatabaseorretrievalsystem,withoutthepriorwritten permissionofthepublisher. 1 2 3 4 5 6 7 8 9 0 DOC/DOC 0 1 0 9 8 7 6 5 4 ISBN0-07-144493-9 ThesponsoringeditorforthisbookwasStephenS.Chapmanandthepro- ductionsupervisorwasSherriSouffrance.ItwassetinCenturySchool- bookbyInternationalTypesettingandComposition.Theartdirectorfor thecoverwasHandelLow. PrintedandboundbyRRDonnelley. McGraw-Hillbooksareavailableatspecialquantitydiscountstouseas premiums and sales promotions, or for use in corporate training pro- grams. For more information, please write to the Director of Special Sales,McGraw-HillProfessional,TwoPennPlaza,NewYork,NY10121- 2298.Orcontactyourlocalbookstore. Thisbookisprintedonrecycled,acid-freepaper containingaminimumof50%recycled,de-inked fiber. InformationcontainedinthisworkhasbeenobtainedbyThe McGraw-Hill Companies, Inc. (“McGraw-Hill”) from sources believedtobereliable.However,neitherMcGraw-Hillnorits authorsguaranteetheaccuracyorcompletenessofanyinforma- tionpublishedherein,andneitherMcGraw-Hillnoritsauthors shallberesponsibleforanyerrors,omissions,ordamagesaris- ingoutofuseofthisinformation.Thisworkispublishedwith theunderstandingthatMcGraw-Hillanditsauthorsaresup- plyinginformationbutarenotattemptingtorenderengineer- ingorotherprofessionalservices.Ifsuchservicesarerequired, theassistanceofanappropriateprofessionalshouldbesought. ii Contents Preface vii Acknowledgments xi Chapter1. Two-PortNetworkParameters 1 TraditionalNetworkParameters 1 ScatteringParameters 5 ConversionsbetweenTwo-PortParameters 8 InterconnectionofTwo-PortNetworks 12 PracticalTwo-PortCircuits 15 Single-elementnetworks 15 π-andT-networks 16 Three-PortNetworkwithCommonTerminal 19 TransmissionLine 21 Chapter2. NonlinearCircuitDesignMethods 27 SpectralDomainAnalysis 27 Trigonometricidentities 28 Piecewise-linearapproximation 29 Besselfunctions 33 TimeDomainAnalysis 35 Newton-RaphsonAlgorithm 42 QuasilinearMethod 45 HarmonicBalanceMethod 48 Chapter3. NonlinearActiveDeviceModeling 53 PowerMOSFETs 54 Small-signalequivalentcircuit 54 Determinationofequivalentcircuitelements 58 NonlinearI-Vmodels 61 NonlinearC-Vmodels 66 Chargeconservation 73 Gate-sourceresistance 74 Temperaturedependence 74 iii iv Contents GaAsMESFETsandHEMTs 77 Small-signalequivalentcircuit 77 Determinationofequivalentcircuitelements 79 Curticequadraticnonlinearmodel 83 Curtice-Ettenbergcubicnonlinearmodel 84 Materka-Kacprzaknonlinearmodel 85 Raytheon(Statzetal.)nonlinearmodel 86 TriQuintnonlinearmodel 90 Chalmers(Angelov)nonlinearmodel 91 IAF(Berroth)nonlinearmodel 94 Modelselection 95 BJTsandHBTs 96 Small-signalequivalentcircuit 96 Determinationofequivalentcircuitelements 97 Equivalenceofintrinsicπ-circuitandT-circuittopologies 100 Nonlinearbipolardevicemodeling 102 Chapter4. ImpedanceMatching 109 MainPrinciples 109 SmithChart 112 MatchingwithLumpedElements 117 BipolarUHFpoweramplifier 124 MOSFETVHFhigh-poweramplifier 129 MatchingwithTransmissionLines 131 Narrow-bandpoweramplifierdesign 140 Broadbandhigh-poweramplifierdesign 142 TypesofTransmissionLine 145 Coaxialline 145 Stripline 146 Microstripline 149 Slotline 151 Coplanarwaveguide 153 Chapter5. PowerCombiners,ImpedanceTransformers andDirectionalCouplers 155 BasicProperties 155 Three-PortNetworks 156 Four-PortNetworks 157 CoaxialCableTransformersandCombiners 159 WilkinsonPowerDivider 168 MicrowaveHybrids 175 Coupled-LineDirectionalCouplers 182 Chapter6. PowerAmplifierDesignFundamentals 189 MainCharacteristics 190 GainandStability 195 StabilizationCircuitTechnique 198 FrequencydomainsofBJTpotentialinstability 198 FrequencydomainsofMOSFETpotentialinstability 204 Someexamplesofstabilizationcircuits 208 Contents v Linearity 212 BasicClassesofOperation:A,AB,BandC 219 DCBiasing 228 Push-PullAmplifiers 234 PracticalAspectofRFandMicrowavePowerAmplifiers 239 Chapter7. HighEfficiencyPowerAmplifierDesign 247 OverdrivenClassB 247 ClassFCircuitDesign 250 InverseClassF 264 ClassEwithShuntCapacitance 271 ClassEwithParallelCircuit 279 ClassEwithTransmissionLines 286 BroadbandClassECircuitDesign 299 PracticalHighEfficiencyRFandMicrowavePowerAmplifiers 305 Chapter8. BroadbandPowerAmplifiers 315 Bode-FanoCriterion 316 MatchingNetworkswithLumpedElements 318 MatchingNetworkswithMixedLumpedandDistributedElements 327 MatchingNetworkswithTransmissionLines 330 LossyMatchingCircuits 339 PracticalDesignAspect 343 Chapter9. PowerAmplifierDesignforCommunicationSystems 355 KahnEnvelopeEliminationandRestorationTechnique 356 EnvelopeTracking 361 OutphasingPowerAmplifiers 365 DohertyPowerAmplifierArchitecture 372 Switched-ModeandDual-PathPowerAmplifiers 381 FeedforwardLinearizingTechnique 389 PredistortionLinearization 392 MonolithicCMOSandHBTPowerAmplifiersforHandsetApplication 397 Index 413 vi Preface The main objective of this book is to present all the relevant informa- tionrequiredforRFandmicro-wavepoweramplifierdesignincluding well-knownandnoveltheoreticalapproachesandpracticaldesigntech- niquesaswellastosuggestoptimumdesignapproacheseffectivelycom- bining analytical calculations and computer-aided design. This book can also be very useful for lecturing to promote the analytical way of thinkingwithpracticalverificationbymakingabridgebetweentheory and practice of RF and microwave engineering. As it often happens, a new result is the well-forgotten old one. Therefore, the demonstration ofnotonlynewresultsbasedonnewtechnologiesorcircuitschematics is given, but some sufficiently old ideas or approaches are also intro- duced,thatcouldbeveryusefulinmodernpracticeorcouldcontribute toappearanceofnewideasorschematictechniques. Asaresult,thisbookisintendedforandcanberecommendedto: (cid:2) University-level professors and scientists, as possible reference and well-founded material for creative research and teaching activity thatwillcontributetostrongbackgroundforgraduateandpostgrad- uatestudents (cid:2) R&Dstaff,tocombinethetheoreticalanalysisandpracticalaspect includingcomputer-aideddesignandtoprovideasufficientbasisfor newideasintheoryandpracticalcircuittechnique (cid:2) PracticingRFdesignersandengineers,asananthologyofmanywell- knownandnewpracticalRFandmicrowavepoweramplifiercircuits withdetaileddescriptionoftheiroperationalprinciplesandapplica- tionsandclearpracticaldemonstrationoftheoreticalresults In Chapter 1, the two-port networks are introduced to describe the behavior of linear and nonlinear circuits. To characterize the nonlin- earpropertiesofthebipolarorfield-effecttransistors,theirequivalent circuit elements are expressed through the impedance Z-parameters, admittanceY-parameters,orhybrid H-parameters.Ontheotherhand, vii viii Preface the transmission ABCD-parameters are very important in the design ofthedistributedcircuitsasatransmissionlineorcascadedelements, whereasthescatteringS-parametersarewidelyusedtosimplifyamea- surementprocedure. ThemainpurposeofChapter2istopresentwidelyusednonlinearcir- cuitdesigntechniquestoanalyzenonlinearpoweramplifiercircuits.In general,thereareseveralapproachestoanalyzeanddesignthesenon- linear circuits, depending on their main specifications—for example, ananalysisintimedomainwhenitisnecessarytodeterminethetran- sientcircuitbehaviororinfrequencydomaintoprovideimprovementof the power and spectral performances when both parasitic effects such as instability and spurious effects must be eliminated or minimized. Usingthetime-domaintechniqueitisquiteeasytodescribethecircuit by differential equations, whereas frequency-domain analysis is more explicitwhenarelativelycomplexcircuitcanbereducedtooneormore setsofimmitancesateachharmoniccomponent. In Chapter 3, all the necessary steps to provide an accurate device modelingprocedurestartingwiththedeterminationofthesmall-signal equivalent circuit parameters are described and discussed. A variety of nonlinear models for MOSFET, MESFET, HEMT, and bipolar de- vicesincludingHBTs,whichareveryprospectiveformodernmicrowave monolithic integrated circuits of power amplifiers and oscillators, are presented. In order to highlight the advantages or drawbacks of one nonlinear device model over the other, a comparison of the measured and modeled volt-ampere and voltage-capacitance characteristics or a frequencyrangeofmodelapplicationismade. Aconceptofimpedancematchingandtheimpedance-matchingtech- nique, which is very important when designing power amplifiers, is presented in Chapter 4. First, the main principles and impedance- matchingtoolssuchastheSmithchartaredescribed,givingthestart- ingpointofthematching-designprocedure.Asanengineeringsolution in general depends on the different circuit requirements, the designer should choose the optimum solution among a variety of the matching networks including either lumped elements or transmission lines or bothofthem.Tosimplifyandvisualizethematching-designprocedure, ananalyticalapproach,whichallowscalculatingtheparametersofthe matching circuits using simple equations, and Smith chart traces is discussed and illustrated with several examples of the narrowband and broadband RF and microwave power amplifiers using bipolar or MOSFETdevices.Finally,thedesignformulasandcurvesarepresented fordifferenttypesoftransmissionlinesincludingstripline,microstrip line,slotline,andcoplanarwaveguide. Chapter 5 describes the basic properties of three-port and four-port networksaswellasavarietyofdifferentcombiners,transformers,and Preface ix directional couplers for RF and microwave power applications. So, for power combining in view of insufficient power performance of the ac- tive devices, it is best to use the coaxial cable combiners with ferrite coretocombinetheoutputpowersofRFpoweramplifiersintendedfor widebandapplications.Asthedeviceoutputimpedanceforhighpower levels is usually too small, to match this impedance with a standard 50-(cid:3) load, it is necessary to use the co-axial line transformers with specifiedimpedancetransformation.Fornarrowbandapplications,the N-way Wilkinson combiners are widely used due to the simplicity of theirpracticalrealization.Atthesametimeinmicrowaves,thesizeof thecombinersshouldbeverysmall.Therefore,thecommonlyusedhy- bridmicrostripcombinersincludingdifferenttypesofmicrowavehybrid anddirectionalcouplersaredescribedandanalyzed. Chapter 6 represents the fundamentals of the power amplifier de- sign, which is generally a complicated procedure when it is necessary to provide simultaneously accurate active device modeling, effective impedancematchingdependingonthetechnicalrequirementsandop- eration conditions, stability in operation, and ease in practical imple- mentation. Therefore, at the beginning of the chapter the key defini- tionsofdifferentpowergainsandstabilityareintroduced.Forastable operation mode of the power amplifier, it is necessary to evaluate the operating frequency domains where the active device may be poten- tiallyunstable.Toavoidparasiticoscillations,thestabilizationcircuit techniquefordifferentfrequencydomainsfromlowfrequenciestohigh frequenciesclosetothedevicetransitionfrequencyisanalyzedanddis- cussed.Oneofthekeyparametersofthepoweramplifierisitslinearity, whichisveryimportantformanyTVandcellularapplications.There- fore, the relationships between the output power, 1-dB gain compres- sionpoint,third-orderinterceptpoint,andintermodulationdistortions of the third and higher orders are given and illustrated for different active devices. The basic classes of the power amplifier operation A, AB, B, and C are introduced, analyzed, and illustrated. The device bi- asingconditionsandexamplesofbiascircuitsforMOSFETandbipolar devicestoimprovelinearityortoincreaseefficiencyareshownanddis- cussed.Alsotheconceptofpush-pullamplifiersandtheircircuitdesign usingbalancedtransistorsisgiven.Inthefinalsection,thenumerous practicalexamplesofpoweramplifiersusingMOSFET,MESFET,and bipolardevicesindifferentfrequencyrangesandforoutputpowersare shownanddiscussed. Modern commercial and military communication systems require high-efficiency long-term operating conditions. Chapter 7 describes in detail the possible circuit solutions to provide a high-efficiency power amplifieroperationbasedonusingdifferentoverdriven(ClassB,ClassF, and Class E) classes of operation or newly developed subclasses,
Description: