ebook img

Revisiting the angular momentum growth of protostructures evolved from non-Gaussian initial conditions PDF

0.14 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Revisiting the angular momentum growth of protostructures evolved from non-Gaussian initial conditions

Mon.Not.R.Astron.Soc.000,000–000(0000) Printed23January2013 (MNLATEXstylefilev2.2) Revisiting the angular momentum growth of protostructures evolved from non-Gaussian initial conditions 3 C.Fedeli 1 0 DepartmentofAstronomy,UniversityofFlorida,211BryantSpaceScienceCenter,Gainesville,FL32611([email protected]) 2 n a 23January2013 J 2 2 ABSTRACT I adopta formalismpreviouslydevelopedby Catelan and Theuns(CT) in orderto estimate ] theimpactofprimordialnon-Gaussianityonthequasi-linearspingrowthofcolddarkmatter O protostructures.A varietyofbispectrumshapesareconsidered,spanningthe currentlymost C popular early Universe models for the occurrence of non-Gaussian density fluctuations. In . their originalwork, CT consideredseveral othershapes, and suggested that only for one of h thosedoestheimpactofnon-Gaussianityseemtobeperturbativelytractable.Forthatmodel, p and on galactic scales, the next-to-linearnon-Gaussian contribution to the angular momen- - o tum variance has an upper limit of ∼ 10% with respect to the linear one. I find that all the r newmodelsconsideredinthisworkcanalsobeseeminglydescribedviaperturbationtheory. t s Consideringcurrentboundson f forinflationarynon-Gaussianityleadstothequasi-linear NL a contributionbeing ∼ 10−20%ofthe linearone.Thisresultmotivatesthe systematicstudy [ ofhigher-ordernon-Gaussiancorrections,in ordertoattaina comprehensivepictureofhow 1 structuregravitationaldynamicsdescendsfromthephysicsoftheprimordialUniverse. v 6 Keywords: large-scalestructureoftheUniverse 9 1 5 . 1 1 INTRODUCTION spacetop-hatfilter).Forothertemplatesthenon-Gaussian contri- 0 butioniscomparableto,orlargerthan,thelinearterm,suggesting 3 GravitationalinstabilityandhierarchicalgrowthofColdDarkMat- theimpossibilityofaperturbativeexpansion. 1 ter(CDM)densityperturbationsprovideanelegantdescriptionfor : v theacquisitionofangularmomentumbyprotostructures.Accord- i ingly,patchesofmatterarespunupbytidaltorquesexertedbythe Since then, the issue of angular momentum growth in non- X Gaussian cosmologies has not been investigated further. On surroundingLarge-ScaleStructure(LSS,seePeebles1969, 1971; r Doroshkevich 1970; White 1984; Heavens&Peacock 1988). At the contrary, new and more general models of primordial non- a Gaussianityexistnowadays and, mostimportantly, constraints on thelinearlevelthespingrowthisgivenbythecouplingofthefirst- thelevel of primordial non-Gaussianity coming fromthe Cosmic order deformation tensor and the inertia tensor of the patch, and MicrowaveBackground(CMB)andtheLSShavedramaticallyim- itagreesquitewellwithmoreaccuratenumerical results(seethe proved overthelastdecade. Giventhecosmological relevance of reviewbyScha¨fer2009andthereferencestherein). primordialnon-Gaussianity(seeBartoloetal.2004;Chen2010for Acquisition of angular momentum beyond the simple linear recentreviews)andthesignificanceoftheCDMhaloangularmo- description has been tackled by means of Lagrangian perturba- mentumacquisitionfortheformationandevolutionofgalaxies,it tion theory in a series of papers by Catelan and Theuns (Catelan is important to update this topic. Specifically, it is interesting to 1995;Catelan&Theuns1996a,b,1997,CThenceforth)almosttwo exploretheamplitudesandbehaviorsofthequasi-linearcontribu- decades ago. In particular, they found that the next-to-linear cor- tionstospingrowthgivenbynon-Gaussianmodelsthatarepopular rectiontothegrowthofensemble-averaged spinisnon-vanishing nowadays.Thisisthescopeofthepresentletter. only if primordial density fluctuations are non-Gaussian. CT ex- plored several non-Gaussian models, and concluded that only for one of these does the angular momentum acquisition appear per- The rest of the manuscript is organized as follows. In Sec- turbativelytractable:thelog-normalmodelforthegravitationalpo- tion 2 I review the linear and next-to-linear contributions to the tentialofMoscardinietal.(1991).Forthistemplate,andadopting ensemble-averaged spin growth of matter patches. In Section 3 I arepresentativemassscaleof M ∼ 1012h−1M (withh = 0.5and summarize the non-Gaussian cosmologies explored here. In Sec- ⊙ Gaussianfiltering),CTfoundanupperlimitof∼24%forthequasi- tion4resultsaredisplayedandinSection5conclusionsaredrawn. linearnon-Gaussian contribution tothespinvariance. Thisfigure Whereneeded, I adopted the followingcosmological parameters: translatestoa ∼ 10%valuewhenrescaledtoasmallerandmore Ωm,0 = 0.272,ΩΛ,0 = 1−Ωm,0,Ωb,0 = 0.046, H0 = 100hkms−1 typicalgalacticmassof M =1010h−1M (withh= 0.7andareal- Mpc−1withh=0.704,σ =0.809,andn =1. ⊙ 8 s 2 C.Fedeli 2 ANGULARMOMENTUMACQUISITION By expanding the Zel’dovich potential around the center of mass of the patch (assumed to be, without loss of generality, the 2.1 Lagrangiandisplacement originofthereferenceframe)uptothesecondorder,theprevious InLagrangian theorythecomoving position xof amasselement equationtakesthecompactform attimeτcanbewrittenintermsofitsinitialposition qandadis- dD(τ) placementvectorfieldS,as J1,α(τ)= dτ εαβγD1,βσIσγ(τ). (8) x(q,τ)=q+S(q,τ). (1) InthepreviousequationεαβγisthefullyantisymmetricLevi-Civita tensor,D istheZel’dovichdeformationtensor, 1,βσ Following CT here I used a time variable τ that is related to the standardcosmictimetbydτ=dt/a2(Shandarin1980),whereais D ≡ ∂2ψ1(0) =− dp p p ψˆ (p), (9) thescalefactor. 1,βσ ∂qβ∂qσ ZR3 (2π)3 β σ 1 Perturbative approximations to this exact expression can be whileI istheinertiatensorofthepatch, σγ foundbyexpandingthedisplacementfieldinaseries, I (τ)≡a3(τ)ρ dqq q . (10) ∞ σγ m,0 σ γ S= S , (2) ZΓ n Xn=1 Summationoverrepeatedindicesisimplicit. Likewise,thesecond-ordertermintheseriesexpansionofthe whereS corresponds totheZel’dovichapproximation S (q,τ) = 1 1 angularmomentumreads D(τ)∇ψ (q).Here D(τ)isthegrowthfactoroflineardensityper- 1 turbations,whichinaEinstein-deSitteruniversereadsD(τ)=τ−2. J (τ)=a3(τ)ρ dE(τ) dqq×∇ψ (q), (11) The function ψ1 is the first order (Zel’dovich) displacement po- 2 m,0 dτ ZΓ 2 tential(Zel’dovich1970),relatedtothelineardensityperturbation which,underasecond-orderTaylorexpansionofthedisplacement field by the Poisson equation ∆ψ1(q) = δ(q), so that in Fourier potentialtakestheform spaceψˆ (p)=δˆ(p)/p2. 1 dE(τ) The second-order termof thedisplacement fieldcan alsobe J (τ)= ε D I (τ). (12) separatedintimeandspace, according to S (q,τ) = E(τ)∇ψ (q). 2,α dτ αβγ 2,βσ σγ 2 2 The growth factor E(τ) reads E(τ) = −3τ−4/7 in an Einstein-de Itcanbeshownthatthesecond-orderdeformationtensorinFourier Sitteruniverse,whileforitsmoregeneralexpressionIrefertoCT. spacereads Thesecond-orderdisplacementpotentialcanberelatedtoitsfirst- ordercounterpartinFourierspaceby dp dp (p +p ) (p +p ) D = 1 2 1 2 β 1 2 σK(p ,p )× 2,βσ ZR6 (2π)6 kp1+p2k2 1 2 1 dp dp × ψˆ (p )ψˆ (p ), (13) ψˆ (p) = − 1 2 (2π)3δ (p +p −p) K(p ,p )× 1 1 1 2 2 p2 ZR6 (2π)6 h D 1 2 i 1 2 intermsoftheZel’dovichpotential. × ψˆ (p )ψˆ (p ). (3) 1 1 1 2 InthepreviousEquationK(p1,p2)isasymmetricintegrationkernel 2.3 Ensembleaverages definedas Inordertosimplifythepreviousresults,itismeaningfultoconsider 1 1 K(p ,p )≡ p2p2− p ·p 2 = p2p2 1−µ2 , (4) the ensemble average of the square of the angular momentum. It 1 2 2 1 2 1 2 2 1 2 h (cid:0) (cid:1) i (cid:16) (cid:17) thenfollowsthat,uptothenext-to-linearorder, whereµisthecosineoftheanglebetweenthetwowavevectors p 1 kJ(τ)k2 ≃ kJ (τ)k2 +2hJ (τ)·J (τ)i , (14) and p . 1 1 2 2 D E D E where 2 dD(τ) 2 2.2 Spingrowth kJ1(τ)k2 = 15" dτ # ν21−3ν2 σ2M . (15) D E (cid:16) (cid:17) The angular momentum of the matter initiallycontained in a co- In the previous Equation σ is the mean deviation of the mat- M movingLagrangianpatchΓoftheUniverseattimeτcanbewritten ter density field smoothed on a scale corresponding to mass M, asanintegraloverΓ, while ν and ν are the first and second invariant of the inertia 1 2 tensor, respectively. To be more precise, if λ , λ , and λ are the ∂S(q,τ) 1 2 3 J(τ)=a3(τ)ρm,0ZΓdq(cid:2)q+S(q,τ)(cid:3)× ∂τ . (5) νth2re≡eλe1iλg2en+vaλl1uλe3s+ofλt2hλe3.inertiatensor,thenν1 ≡ λ1+λ2+λ3 and By considering the series expansion of the Lagrangian displace- Thenexttermisnon-vanishingonlyifdensityfluctuationsare ment fieldS introduced inEq. (2),the angular momentum of the non-Gaussian,andreads patchcanbesimilarlywrittenas 2 dD(τ)dE(τ) hJ (τ)·J (τ)i= ν2−3ν ω , (16) ∞ 1 2 15 dτ dτ 1 2 M J = J . (6) (cid:16) (cid:17) m where Xm=1 Thefirst-ordertermoftheangularmomentumseriestakestheform dp dp ω = −15 1 2kp +p k2K(p ,p )Wˆ2(kp +p k)× J (τ)=a3(τ)ρ dD(τ) dqq×∇ψ (q). (7) M ZR6 (2π)6 1 2 1 2 R 1 2 1 m,0 dτ ZΓ 1 × Bψ1(p1,p2,−p1−p2). (17) Angularmomentumgrowth 3 In the previous Equation B represents the bispectrum of the ψ1 Zel’dovichpotential,whichisnowexplicitlysmoothedonascale R = (2GM/Ω H2)1/3.Iassumedthestandardreal-spacetop-hat m,0 0 smoothing.TheZel’dovichpotentialcanberelatedtothestandard gravitationalpotentialϕbymakinguseofthePoissonequation, 2 T(p) ψˆ (p)= ϕˆ(p)≡F(p)ϕˆ(p), (18) 1 3H2Ω 0 m,0 whereT(p)isthecolddarkmattertransferfunction(Bardeenetal. 1986; Sugiyama 1995). Theintegral in Eq. (17) has tobe solved numerically for realistic bispectrum shapes. Fortunately, the bis- pectrumusuallydepends onlyonthemagnitudeofitsthreeargu- ments,sothattheabovesix-dimensionalintegralreducestoathree- dimensionalone. 3 NON-GAUSSIANSHAPES I considered five different shapes for the primordial bispectrum, that are briefly described below. The first four are motivated by inflationary physics, and the amplitude of non-Gaussianity is given by the parameter f (assumed to be constant). The fifth NL is non-inflationary in nature, and hence independent on fNL. See Figure1.TheshapeofthefunctionωM,quantifyingthenon-Gaussiancon- Fedelietal.(2011)andreferencestherein. tribution totheangular momentumvariance growth. Different linestyles andcolors refertodifferent non-Gaussian bispectrum shapes,aslabeled. Thenon-Gaussianityinducedbythematterbounceisindependenton fNL, 3.1 Localshape whileinallothercases fNL=1hasbeenassumed. This bispectrum shape arises when a light scalar field, addi- tional to the inflaton, contributes to the curvature perturbations 3.4 Orthogonalshape (Bernardeau&Uzan 2002; Babich,Creminelli,&Zaldarriaga Thisshape isdefined asbeing orthogonal (withrespect toasuit- 2004; Sasaki,Va¨liviita,&Wands 2006). It is the same ably defined scalar product) to both the local and equilateral shape produced by the standard model of inflation forms. The resulting bispectrum is maximized for both equilat- (Falk,Rangarajan,&Srednicki 1993) but in this case the am- eraland squashed configurations, andatemplatecan befound in plitudecanbearbitrary.Thepotentialbispectrumtakesthesimple Senatore,Smith,&Zaldarriaga(2010). form B (p ,p ,p )=2A2f (p p )ns−4+(p p )ns−4+(p p )ns−4 ,(19) ϕ 1 2 3 NL 1 2 1 3 2 3 3.5 Matterbounceshape h i anditismaximizedforsqueezedconfigurations.ThequantityAis Thisconfigurationistheconsequenceofamodeluniversewithout thespectralamplitudeofthepotential(givenbyσ ),whilen isthe 8 s inflation,butwithascalefactorthatbouncesinanon-singularway spectralslope. (Brandenberger2009;Caietal.2009).Thematterbounceleadsto a scale-invariant spectrum of density fluctuations, and to a bis- pectrum whose shape is similar to the local shape. Being non- 3.2 Equilateralshape inflationary in origin, the non-Gaussianity induced by a matter This shape is a consequence of the inflaton Lagrangian being bouncemodelhasnodependenceon fNL.Itcaninsteadbeshown non-standard, and containing higher-order derivatives of the field that thematterbounce bispectrum iscomparable tothelocal one (Alishahiha,Silverstein,&Tong2004;Arkani-Hamedetal.2004; withafixed fNL =−35/8.Iconsideredexplicitlythematterbounce Li,Wang,&Wang2008).Theresultingbispectrumismaximized becauseitisinprinciplepossiblethataweightedintegralofthebis- forequilateralconfigurations.Atemplatefortheequilateralbispec- pectrum,suchastheoneinEq.(17),wouldmagnifyitsdifferences trumcanbefoundinCreminellietal.(2007),howevertheexpres- withrespecttothelocalmodel.AsIshowbelowthisisactuallynot sion israthercumbersome and I didnot report ithere. Thesame thecase. appliestothefollowingshapes. 4 RESULTS 3.3 Enfoldedshape InFigure1Ishowω asafunctionofthemassscaleforthefive M The enfolded shape results from primordial non-Gaussianity be- non-Gaussian cosmologies considered in this letter. In all cases, ing evaluated without the regular Bunch-Davies vacuum hy- exceptforthematterbounce,Iselected f =1inordertopurely NL pothesis (Chenetal. 2007; Holman&Tolley 2008). In this highlighttheeffectofthebispectrumshape.Itishowevereasyto case the bispectrum is maximized for squashed configura- seethatω issimplyproportionalto f .Allcurvesdecreasewith M NL tions. A template for such a bispectrum is reported in increasingmass,implyingthatlargermatterpatchesacquirelower Meerburg,vanderSchaar,&Corasaniti(2009). amounts of angular momentum than smaller ones. This behavior 4 C.Fedeli Einstein-deSittercosmological model thisimplies τ2 = σ ,and ∗ M thus 12ω Υ (τ )=− M . (22) M ∗ 7 σ3 M InFigure2IshowthemassdependenceofthefunctionΥ (τ ) M ∗ forthevarious non-Gaussian cosmologies that havebeen consid- ered in this work. For models with inflationary non-Gaussianity I assumed f = 1. As can be seen the mass dependence is in NL all cases relatively weak. In the local and matter bounce mod- els Υ (τ ) is basically unchanged for masses ranging between M ∗ M = 108h−1M and M = 1015h−1M .Fortheequilateralanden- ⊙ ⊙ foldedmodelsΥ (τ )increasesby∼ 50%overthesameinterval, M ∗ whilefortheorthogonalcaseitdecreasesbyafactorof∼3.Hence, despitethefactthatthelinearandnon-Gaussiancontributionstothe spingrowthbothdecreasewithmass,theirrelativeimportancere- mainsrelativelyunchanged. Theonlyexceptionisrepresentedby theorthogonalmodel. Next, I selected a reference mass scale of M = 1010h−1M ⊙ andcomputedthedependenceofΥ (τ )on f ,showninFigure M ∗ NL 3.Aspreviouslymentioned,thisdependenceisalwayslinear,how- evertheFigureisimportantinordertounderstandforwhatvalue of f acertainnon-Gaussianmodelprovidesagivencontribution Figure2.Thenon-Gaussiancontributiontothespinvariancegrowthnor- NL tothetotalangularmomentum variance.Thematterbounce non- malized by the linear contribution, evaluated at the collapse time for an Gaussianityisindependentof f ,henceitscontributionisalways overdensityofagivenmass.LinetypesandcolorsarethesameasinFigure NL 1,and fNL =1hasbeenassumedforallmodelsexceptthematterbounce atthepercent(negative)levelcomparedtothelinearone.Asforthe (whichis fNL-independent). othermodels,inorderforthenon-Gaussiancontributiontobecom- parabletothelinearone, primordial non-Gaussianity wouldneed tobeat theunrealisticlevel of f ∼ 400 forthelocal case, and NL issimilartothe massdependence of thelinear termgiven inEq. substantiallylargerthanthatforotherbispectrumshapes. (15). Also, curves referring to different models are rather similar Figure 3 allows one to determine the non-Gaussian contri- inshape.Besidesthematterbouncemodel,thelocalmodelisthe bution, in units of the linear contribution, for the current bounds one havingthelargest effect, whiletheorthogonal model hasthe on f . Constraints from the CMB (Komatsuetal. 2011) imply NL lowest. This isdifferent fromthe behavior of, e.g., thehalo bias, −13< f <96at95%ConfidenceLevel(CL)forthelocalshape1, NL for which the equilateral model displays the smallest effect. The meaningthatthenon-Gaussiancontributioncanbeatmost∼19% functionω forthematterbounceisvirtuallyidenticaltothatfor M ofthelinearone.ThesameCMBdataconstrain−278< f <346 thelocal model when assuming f = −35/8, inagreement with NL NL for the equilateral shape, implying a ∼ 18% relative importance. thepreviousdiscussion. Thetighterconstraintsonthelevelofnon-Gaussianityfortheen- Ascanbeseen fromthestructureofEqs. (15) and(16),the foldedshapecomefromtheLSS(Xiaetal.2011),correspondingto relativeimportanceofthenon-Gaussiancontributionwith respect −16< f <465at2σconfidencelevel.Thismeansthatthenon- NL tothelinearoneis Gaussiancontributionisatmost∼ 16%ofthelinearone.Finally, Υ (τ)≡2hJ1(τ)·J2(τ)i =2dE(τ)/dτ ωM . (20) for the orthogonal shape the CMB data by Komatsuetal. (2011) M kJ1(τ)k2 dD(τ)/dτσ2M bear−533< fNL <8,implyingamaximum∼10%(negative)rela- Theacquisiti(cid:10)onofang(cid:11)ularmomentumbyprotostructureshappens tivestrength.Thesenumberscanbeappreciatedalsobylookingat thepositionsofthefilledcirclesinFigure3.Forcomparison, the athighredshiftwhere,undertheassumptionofflatspatialgeom- black dotted lineshows theupper limit tothenon-Gaussian con- etry, the Universe is well approximated by an Einstein-de Sitter tributionfoundbyCT,afterassumingalog-normaldistributionfor model.Correctionsduetothepresenceofacosmologicalconstant the primordial gravitational potential and after rescaling it to the canbeconsideredtobenegligible.Ifthisisthecase,then scale M = 1010h−1M . I stress the fact that, while CT adopted a Υ (τ)=−12τ−2ωM =−12(3t)2/3ωM . (21) Gaussianwindowfunc⊙tionandh=0.5,Iusedareal-spacetop-hat M 7 σ2M 7 σ2M filterandh=0.704.Moreover,whileCTcalibratedthelevelofpri- Note that the negative sign cancels with the negative sign in the mordialnon-GaussianityusingavalueSR =4fortheskewnessof definitionofω ,sothatthenon-Gaussiancontributionispositive thematterdensityfieldonascaleR=8h−1Mpc,Iadopted,conser- M (increasesthespingrowth)foramodelwithpositiveskewnessand vatively,SR=0.1.Thisvalueresultsfromthelarge-scaleskewness negativeotherwise.ThishasalreadybeennoticedbyCT.Thepre- per unit fNL for local non-Gaussianity (∼ 10−3, e.g., Figure 1 of vious equation also shows that the non-Gaussian contribution to Fedelietal.2011)multipliedbythemostrecentupperlimitonthe spinacquisitiongrowsfasterthanthelinearone. levelofnon-Gaussianityforthesameshape(fNL∼100). If the matter patch under consideration is an overdense re- gion, it is reasonable to assume that the spin growth induced by tidaltorques occurs until theoverdensity detaches fromtheover- 1 IconvertedallconstraintsmentionedheretotheLSSconvention,which allexpansionoftheUniverseandcollapsesintoaboundstructure. hasbeen adopted throughout. SeeFedeli&Moscardini (2010)andrefer- Thismomentτ∗ canbenaivelyidentifiedasD(τ∗)σM = 1.Foran encesthereinforadiscussion. Angularmomentumgrowth 5 becausehigher-ordernon-Gaussiancorrections,thathavenotbeen consideredhere,dependonthetrispectrumoftheZel’dovichpoten- tial,andhencealsoreacttoprimordialnon-Gaussianity.Theresults presentedinthislettermotivatethestudyofthesehigher-ordercon- tributions,andshowhowitispossibletoconsistentlydescribethe dynamicsofprotostructuresbasedonlargelygeneralcosmological initialconditions. ACKNOWLEDGEMENTS IthanktheUniversityofFloridaforsupportthroughtheTheoret- ical Astrophysics Fellowship. I credit L. Moscardini for insight- ful comments onthe manuscript andI amdeeply indebted tothe anonymousrefereeforhelpinsubstantiallyimprovingthiswork. REFERENCES Alishahiha,M.,Silverstein,E.,&Tong,D.2004,Phys.Rev.D,70,123505 Arkani-Hamed, N., Creminelli, P., Mukohyama, S., & Zaldarriaga, M. 2004,JournalofCosmologyandAstro-ParticlePhysics,4,1 Babich,D.,Creminelli,P.,&Zaldarriaga,M.2004,JournalofCosmology andAstro-ParticlePhysics,8,9 Bardeen,J.M.,Bond,J.R.,Kaiser,N.,&Szalay,A.S.1986,ApJ,304, Figure3.Thenon-Gaussiancontributiontothespinvariancegrowthnor- 15 malized by the linear contribution, evaluated at the collapse time for an Bartolo,N.,Komatsu,E.,Matarrese, S.,&Riotto,A.2004,Phys.Rep., overdensityofmassM =1010h−1M⊙.Linetypesandcolorsarethesame 402,103 asinFigure1,andresultsareshownasafunctionof fNL.Theblacksolid Bernardeau,F.&Uzan,J.2002,Phys.Rev.D,66,103506 linehighlights thelocuswherethenon-Gaussiancontribution isidentical Brandenberger,R.2009,Phys.Rev.D,80,043516 tothelinearone.Filledcirclesoneachcurverepresentthemaximum|fNL| Cai,Y.-F.,Xue,W.,Brandenberger,R.,&Zhang,X.2009,J.Cosmology valuesallowedbycurrentconstraintsfromCMBandLSS.Theblackdotted Astropart.Phys.,5,11 lineshowstheupperlimittothenon-Gaussianspincontributionfoundby Catelan,P.1995,MNRAS,276,115 CTassumingalog-normalmodelfortheprimordialgravitationalpotential, Catelan,P.&Theuns,T.1996a,MNRAS,282,436 afterrescalingCT’sresultasdetailedinthetext. Catelan,P.&Theuns,T.1996b,MNRAS,282,455 Catelan,P.&Theuns,T.1997,MNRAS,292,225 Chen,X.2010,AdvancesinAstronomy,2010 5 CONCLUSIONS Chen,X.,Huang,M.,Kachru,S.,&Shiu,G.2007,JournalofCosmology andAstro-ParticlePhysics,1,2 I reconsidered the impact of primordial non-Gaussianity on the Creminelli,P.,Senatore,L.,Zaldarriaga,M.,&Tegmark,M.2007,Journal acquisition ofangular momentum by CDMprotostructures. Non- ofCosmologyandAstro-ParticlePhysics,3,5 Gaussian initial conditions provide a next-to-linear correction to Doroshkevich,A.G.1970,Astrophysics,6,320 the spin growth that is absent when density fluctuations are nor- Falk,T.,Rangarajan,R.,&Srednicki,M.1993,ApJ,403,L1 mallydistributed.Previousresults,obtainedbyCTafterassuming Fedeli, C.,Carbone, C.,Moscardini, L.,&Cimatti, A.2011, MNRAS, alog-normalprimordialgravitationalpotential,resultedinacontri- 414,1545 butiontothespinvarianceof∼10%withrespecttothelinearone. Fedeli,C.&Moscardini,L.2010,MNRAS,405,681 Thisvalueholdsforascale M = 1010h−1M (withthecosmology Heavens,A.&Peacock,J.1988,MNRAS,232,339 ⊙ of thiswork) and is based on a matterskewness of S ∼ 0.1, as Holman,R.&Tolley,A.J.2008,JournalofCosmologyandAstro-Particle R Physics,5,1 deduced intheprevious Section.Othermodelsturnedout togive Komatsu,E.,Smith,K.M.,Dunkley,J.,etal.2011,ApJS,192,18 averylargequasi-lineareffect,suggestingthatLagrangianpertur- Li, M.,Wang,T.,&Wang, Y. 2008, Journal ofCosmology and Astro- bation theory could not be successfully applied in those cases. I ParticlePhysics,3,28 foundthatforseveralcurrentmodelsofnon-Gaussianinitialcon- Meerburg,P.D.,vanderSchaar,J.P.,&Corasaniti,S.P.2009,Journalof ditions, the contribution to the galactic spin variance during the CosmologyandAstro-ParticlePhysics,5,18 mildly non-linear regime issimilar towhat predicted assuming a Moscardini,L.,Matarrese,S.,Lucchin,F.,&Messina,A.1991,MNRAS, log-normalprimordialgravitationalpotential.Consideringtheup- 248,424 perlimitstothecurrentconstraintsonthelevelofinflationarypri- Peebles,P.J.E.1969,ApJ,155,393 mordialnon-Gaussianityreturnsanext-to-linearcontributionatthe Peebles,P.J.E.1971,A&A,11,377 level of ∼ 10 − 20%. These results imply that the spin growth Sasaki,M.,Va¨liviita,J.,&Wands,D.2006,Phys.Rev.D,74,103003 Scha¨fer,B.M.2009,InternationalJournalofModernPhysicsD,18,173 induced by inflationary non-Gaussianity seems to be generically Senatore,L.,Smith,K.M.,&Zaldarriaga,M.2010,JournalofCosmology tractableviaperturbationtheory. andAstro-ParticlePhysics,1,28 CT also demonstrated that higher-order contributions in the Shandarin,S.F.1980,Astrophysics,16,439 case of Gaussian density fluctuations provide a correction to the Sugiyama,N.1995,ApJS,100,281 angular momentum variance equal to ∼ 60% of the linear term. White,S.D.M.1984,ApJ,286,38 This means that the next-to-linear non-Gaussian contribution es- Xia,J.-Q.,Baccigalupi,C.,Matarrese,S.,Verde,L.,&Viel,M.2011,J. timated here has a significant impact on the spin acquisition by CosmologyAstropart.Phys.,8,33 protostructures. Such an impact could potentially be even larger, Zel’dovich,Y.B.1970,A&A,5,84

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.