ebook img

Revisiting CFHTLenS cosmic shear: Optimal E/B mode decomposition using COSEBIs and compressed COSEBIs PDF

1.8 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Revisiting CFHTLenS cosmic shear: Optimal E/B mode decomposition using COSEBIs and compressed COSEBIs

MNRAS000,1–16(2017) Preprint22December 2016 CompiledusingMNRASLATEXstylefilev3.0 Revisiting CFHTLenS cosmic shear: Optimal E/B mode decomposition using COSEBIs and compressed COSEBIs Marika Asgari,1? Catherine Heymans1, Chris Blake2, Joachim Harnois-Deraps3, Peter Schneider4, Ludovic Van Waerbeke3 1ScottishUniversitiesPhysicsAlliance,InstituteforAstronomy,UniversityofEdinburgh,RoyalObservatory,BlackfordHill,Edinburgh, EH93HJ,U.K. 2CentreforAstrophysics&Supercomputing,SwinburneUniversityofTechnology,P.OBox218,Hawthorn,VIC3122,Australia. 6 3DepartmentofPhysicsandAstronomy,UniversityofBritishColumbia,6224AgriculturalRoad,Vancouver,V7T1Z1,B.C,Canada. 1 4Argelander-InstitutfürAstronomie,UniversitätBonn,AufdemHügel71,D-53121Bonn,Germany 0 2 c Accepted2016October4.Received2016August30;inoriginalform2015December21 e D 1 ABSTRACT 2 Wepresentare-analysisoftheCFHTLenSweakgravitationallensingsurveyusingComplete Orthogonal Sets of E/B-mode Integrals, known as COSEBIs. COSEBIs provide a complete ] set of functions to efficiently separate E-modes from B-modes and hence allow for robust O andstringenttestsforsystematicerrorsinthedata.ThisanalysisrevealssignificantB-modes C onlargeangular scalesthatwerenotpreviouslyseen usingthestandardE/Bdecomposition . analyses.WefindthatthesignificanceoftheB-modesisenhancedwhenthedataissplitby h galaxytypeandanalysedintomographicredshiftbins.Addingtomographicbinstotheanal- p - ysisincreasesthenumberofCOSEBIsmodes,whichresultsinalessaccurateestimationof o thecovariancematrixfromasetofsimulations.Wethereforealsopresentthefirstcompressed r COSEBIsanalysisofsurveydata,wheretheCOSEBIsmodesareoptimallycombinedbased t s ontheirsensitivitytocosmologicalparameters.InthistomographicCCOSEBIsanalysiswe a findtheB-modestobeconsistentwithzerowhenthefullrangeofangularscalesareconsid- [ ered. 2 Keywords: Gravitationallensing:weakmethod:dataanalysiscosmology:observations v 5 1 1 0 1 INTRODUCTION laborationetal.2015a)hasbeenwidelyreported.Ithasbeeninter- 0 pretedindifferentwaysasasignfornewphysics(seeforexample . Observationsofweakgravitationallensingbythelarge-scalestruc- 1 Dossett et al. 2015; Planck Collaboration et al. 2015b; Battye & 0 tureintheUniverseprovidesapowerfulprobeofdarkmatter,dark Moss2014),thecombinedeffectsofbaryonicfeedbackandneu- 6 energy and modified gravity theories. The underlying physics of trinos(Harnois-Dérapsetal.2015;Köhlingeretal.2015),orpre- 1 lensingiswellunderstood,leavingthenon-trivialmeasurementit- viouslyunknownsystematicerrors(seeforexampleSpergeletal. : selfasthemainchallengeinreachingthefullpotentialofthiscos- v 2015;Verdeetal.2013;Raveri2015;Addisonetal.2016).Inthis mological tool. Three major new weak lensing surveys are under i paper we address the question of systematic errors by subjecting X way, with the Kilo-Degree Survey (KiDS), the Dark Energy Sur- theCFHTLenSdatatoarigoroustestforshearsystematicsusing r vey(DES),andtheHyper-SuprimeCameraSurvey(HSC).KiDS “CompleteOrthogonalSetsofE/B-modeIntegrals”alsoknownas a and DES recently presented their first ‘cosmic shear’ measure- “COSEBIs”.GravitationallensingcanonlyproduceE-modesand ments (Kuijken et al. 2015; Becker et al. 2015). These new sur- anydetectedB-modesareduetoeithersystematicerrorsorother veysalreadycoverseveralhundredsofsquaredegrees,butfornow physicaleffects.1 they still lack statistical precision in comparison to their deeper TheformalismforCOSEBIswasdevelopedinSchneideretal. butsmallerareapredecessor,theCanada-France-HawaiiTelescope (2010).COSEBIsprovideacompletesetoffunctionsforefficiently Lensing Survey, CFHTLenS (Heymans et al. 2012). As such this separatingE-modesfromB-modesandhenceallowforrobustsys- survey still provides the tightest cosmological constraints from tematicstestsusingtheB-modesandafairlycompresseddataset. weakgravitationallensing. The tension between the results of the CFHTLenS tomo- graphicanalysis(Heymansetal.2013)andthecosmologicalmea- surements from the cosmic microwave background (Planck Col- 1 Whereassourceclusteringandlens-lenscouplingcaninprinciplegener- ateB-modesfromlensing(Schneideretal.2002;Hilbertetal.2009),their amplitudeistoosmalltobesignificantlydetectedincurrentandfuturesur- ? E-mail:[email protected] veys. (cid:13)c 2017TheAuthors 2 M.Asgarietal. Schneideretal.(2010)andEifler(2011)showedthatasmallnum- showninKilbinger(2015)thereisexcellentconsistencybetween berofCOSEBIsmodesareenoughtoessentiallycapturethefull thedifferentcosmologicalconstraintsderivedbythesevariedsta- cosmologicalinformationusingnumericalanalysisandmockdata, tisticalanalysesoftheCFHTLenSsurvey.Themoststringentone, respectively. Asgari et al. (2012) extended the method to tomo- andalsothemostintensionwiththeCMBresultsisthe6-binto- graphicbinsandshowedthatalthoughasmallnumberofCOSE- mographicanalysisofHeymansetal.(2013).Wethereforefocus BIsmodesisenoughforeachredshiftbinpair,inthepresenceof oursystematicsanalysisonthistomographicdataset. many redshift bins the total number of COSEBIs needed is rela- Thispaperisstructuredasfollows:Sect.2outlinesthestatisti- tivelyhigh.Thisisalsotrueforalltheotherconventionallyused calmethods,COSEBIsandCCOSEBIs,thatareusedinthisanaly- cosmic shear observables such as the two-point correlation func- sis.Sect.3containsthemainresults,whereweshowthemeasured tionsortheconvergencepowerspectrum. COSEBIsandCCOSEBIs.WequantifythemeasuredB-modesus- Themostcommonapproachtoestimatecovariancematrices ing a χ2 analysis and finally conclude in Sect.4. We verify our istousemockdatafromnumericalsimulations,buttheprecision pipelinetestsonmockdataintheAppendix. withwhichthiscanbemeasureddecreaseswiththenumberofob- servables(Hartlapetal.2007;Taylor&Joachimi2014;Sellentin &Heavens2015).Therequirementtominimizethenumberofob- servablespromptedAsgari&Schneider(2015)todevelopacom- 2 METHODS:COSEBISANDCCOSEBIS pressionmethodwhichreducesthisnumbersubstantially,without significantlossofinformation.Inthispaperweshowthefirstmea- Converting a measured gravitational lensing shear field to a con- surementofthesecompressedCOSEBIs,whicharecalledCCOSE- vergencefielddoesnotnecessarilyresultintherealprojectedmass BIs.WealsopresentthefirstmeasurementoftomographicCOSE- field expected from gravitational lensing theory (see Bartelmann BIs. &Schneider2001,forareviewofweakgravitationallensing).The CFHTLenSisa3Dweaklensingsurvey,analysingu∗,g0,r0, reasonisthatasidefromfirstorderlensingeffectsthereareotherin- i0,z0 multi-banddataspanning154deg2 fromtheCFHTLegacy fluentialfactors.Theseotherfactorsfallintotwocategoriesaccord- ingtowhethertheiroriginisphysicalornon-physical.Theformer SurveyWideProgramme.Observedinsub-arcsecondseeingcon- mayarisefromhigher-orderlensingeffects(contributionsbeyond ditions,thissurveywasoptimisedforweaklensingscience.Pixel- theBornapproximation,seeSchneideretal.1998),andsourcered- leveldataprocessingusedthelensing-qualityTHELIdatareduc- shift clustering (Schneider et al. 2002), or intrinsic galaxy align- tion package (Erben et al. 2013). PSF Gaussianised photometry ments (see Blazek et al. 2011, and references therein); The latter provided precise photometric redshift distributions (Hildebrandt caseinvolvesnoisecontributionsandremainingsystematiceffects, et al. 2012) with a reasonable level of accuracy as scrutinised in forexample,ingalaxyshapemeasurements.Firstorderweakgrav- Choi et al. (2015) using a spectroscopic galaxy cross-correlation itationallensingcanonlyproducemodeswhicharecommonlyre- clustering analysis. Weak lensing shear measurements were de- ferred to as E-modes, whereas, the modes which arise from the rivedandcalibratedusingthelensfitBayesianmodel-fittingmethod imaginarypartoftheestimatedconvergencefield,κ,arecalledB- (Milleretal.2013).Aseriesofdetailedsystematicsanalyseswere modes.Thesemodesaresonamedbecauseofthesimilarmathe- applied to the full data set, resulting in the rejection of a quarter maticalpropertiesoftheshearfieldandthepolarizationofanelec- ofthesurveyareainordertosatisfystrictsystematiccriteria(Hey- tromagneticradiationfield(bothofthemarepolars).B-modecon- mansetal.2012). tributions from physical effects are expected to be negligible for Anumberofdifferentcosmologicalanalyseshavebeencar- a survey like CFHTLenS. Hence any detection of a B-mode will riedoutusingCFHTLenS.Kilbingeretal.(2013)performedatwo- arise from either inaccuracies in the shape measurements and/or dimensionalanalysisofthedatausingseveralcosmicshearestima- selection biases. Since the physical contributions to the B-modes tors,includingCOSEBIs,thestatisticthatformsthefocusofthis areverysmall,measuringastatisticallyzeroB-mode,suggests(but work.This2DanalysiswasextendedbyFuetal.(2014)whoused doesnotguarantee)asatisfactoryPSFcorrection.Separatingthese COSEBIsinconjunctionwiththethirdorderaperturemassstatis- modesisessentialtotestforsystematicerrors. tictoconstraincosmologicalparameters.Asidefromtheanalysis Anyobservable(statistic)whichseparatesE-modesfromB- ofCFHTLenS,Huffetal.(2014)appliedCOSEBIsonSloanDigi- talSkySurvey(SDSS)datatoconstrainσ andΩ h2 . modesatthetwo-pointstatisticslevel,canbewritteninthefollow- 8 m ingform, Analyses of CFHTLenS that incorporated the redshift- dependence of the weak lensing signal started with a two-bin to- 1Z ∞ E = dϑϑ[T (ϑ)ξ (ϑ)+T (ϑ)ξ (ϑ)], (1) mographic analysis in Benjamin et al. (2013) and Simpson et al. 2 + + − − 0 (2013).Thiswasfollowedbyafinersix-bintomographicanalysis 1Z ∞ inHeymansetal.(2013),wherethedatawasmodelledasacombi- B = dϑϑ[T (ϑ)ξ (ϑ)−T (ϑ)ξ (ϑ)], 2 + + − − nationofacosmologicalsignalandacontaminatingsignalfromthe 0 presenceofintrinsicgalaxyalignments(seealsoMacCrannetal. whereξ (ϑ)arethetwo-pointcorrelationfunctions(2PCFs)ofthe ± 2015;TheDarkEnergySurveyCollaborationetal.2015;Joudaki shearfield,ϑistheangulardistancebetweenpairsofgalaxieson etal.2016,forre-analysesofthisdataset).Thesestatisticalanaly- theskyandT (ϑ)arefilterfunctions,thatarechosentoproduce ± seswerebasedonmeasurementsofthetwo-pointshearcorrelation pureE/B-modes,correspondingtoE/B,respectively.InSchneider functions(2PCFs).Usingonlybluegalaxies,forwhichtheintrin- &Kilbinger(2007),conditionsforsuchfilterswereobtained, sicalignmentcontaminationisexpectedtobenegligible,Kitching etal.(2014)carriedoutafull3-Dpowerspectrumanalysisofthe Z ϑmax dϑ Z ϑmax dϑ T (ϑ)=0= T (ϑ), (2) survey. This power spectrum analysis was restricted to relatively ϑ − ϑ3 − ϑmin ϑmin largephysicalscalestominimisetheeffectsofbaryonfeedbackon Z ϑmax Z ϑmax thenon-linearmatterpowerspectrum(seeSembolonietal.2013; dϑϑT (ϑ)=0= dϑϑ3T (ϑ), (3) + + Mead et al. 2015; Harnois-Déraps et al. 2015, for example). As ϑmin ϑmin MNRAS000,1–16(2017) RevisitingCFHTLenSwithCOSEBIsandCCOSEBIs 3 whereϑ >0andϑ isfinite.UsingtheseconditionsSchnei- 2.2 CompressedCOSEBIs:CCOSEBIs min max deretal.(2010)constructedtwocompleteorthogonalsetsoffilter Data compression is a challenge that will become increasingly functions,T whichformthebasisoftheCOSEBIs. ± moreimportantforfuturelargescalesurveyssuchasEuclid2 and LSST3.Themainreasondatacompressionisessentialisthatthe numberofsimulationsneededtoestimatethedatacovariancema- trixaccurately,dependsonthenumberofobservables.Therefore, havingasmallersetofobservablesreducesthenumberofcosmo- logicalsimulationsneeded. Asgari&Schneider(2015)developedacompressionmethod whichisbasedonthesensitivityofobservables(statistics)tothe 2.1 COSEBIs parameterstobemeasured.Thismethodreliesonourunderstand- The two sets of COSEBIs basis functions are the Lin- and Log- ingoftheseparameters,sincethecompressedobservablesdepend COSEBIs,whicharewrittenintermsofpolynomialsinϑandln(ϑ) on the covariance and derivatives of the parent observable to the inrealspace,respectively.InadditiontoSchneideretal.(2010),Fu parametersattheirfiducialvalue.Theassumptionbehindthiscom- &Kilbinger(2010)constructedfilterswhichmaximizedthesignal- pressionmethodisthatwehavearelativelygoodideaofthevalue to-noiseratioforaspecificangularrange,ormaximizedtheinfor- oftheparametersthatwewanttomeasure(forexamplefrompre- mationcontentofE statisticsviaFisheranalysis.Inthisanalysis viousobservations),whichiscorrectformostofthecosmological weusetheLog-COSEBIs,astheyrequirefewermodescompared parameters. One might expect to lose a significant portion of the totheLin-COSEBIstoessentiallycapturealltheinformation(see informationabouttheparametersifthefiducialcovariancematrix Schneideretal.2010forasingleredshiftbinandAsgarietal.2012 usedforconstructingtheparametersisnotclosetothetruth.How- forthetomographiccase). ever,Asgari&Schneider(2015)appliedthiscompressionmethod The COSEBIs can be written in terms of the 2PCFs in real totomographicCOSEBIsandshowedthattheweaklensinginfor- space, mationlostduethiscompressionissmallevenforveryinaccurate COSEBIscovariancematrices.Thisimpliesthatthiscompression E(ij) = 1Z θmaxdϑϑ[T (ϑ)ξ(ij)(ϑ)+T (ϑ)ξ(ij)(ϑ)], isinsensitivetotheinaccuraciesintheestimatedcovariancematrix n 2 +n + −n − oftheparentobservables,whichmeansthatusingthiscompression θmin (4) allowsforthesameaccuracyinestimationswithfewercosmologi- 1Z θmax calsimulations. B(ij) = dϑϑ[T (ϑ)ξ(ij)(ϑ)−T (ϑ)ξ(ij)(ϑ)], Here we will also use compressed COSEBIs (CCOSEBIs) n 2 +n + −n − θmin for the analysis of the CFHTLenS data. The CCOSEBIs are lin- (5) earcombinationsoftheCOSEBIs.Thecoefficientsoftheselinear combinationsarewrittenintermsofthecovarianceandthederiva- whereE(ij)andB(ij)aretheEandB-modeCOSEBIsforredshift n n tivesoftheCOSEBIswithrespecttocosmologicalparameters, binsiandj,T (ϑ)aretheCOSEBIsfilterfunctionsandn,anat- ±n uralnumber,istheorderoftheCOSEBIsmodes.Themodeswith Ec =ΓE , (9) largernvaluesaretypicallymoresensitivetosmall-scalevariations where Ec is the E-mode CCOSEBIs vector, E is the Eij vector intheshear2PCFs,whilethemodeswithsmallnaresensitiveto n andΓisthecompressionmatrixdefinedas, large-scalevariations.ThisisbecauseT areoscillatoryfunctions ±n withn+1rootsintheirrangeofsupport.Alternatively,theE/B- Γ≡HC−1 , (10) COSEBIscanbeexpressedasafunctionoftheconvergencepower whereHisamatrixformedofbothfirstandsecondderivativesof spectra: theCOSEBIswithrespecttothecosmologicalparametersandC E(ij) =Z ∞ d‘‘P(ij)(‘)W (‘), (6) is the covariance matrix of COSEBIs (see section 2 of Asgari & n 2π E n Schneider2015,forthedetailsoftheformalism).Thenumberof 0 Z ∞ d‘‘ CCOSEBIsmodesforconstrainingP cosmologicalparametersis Bn(ij) = 2π PB(ij)(‘)Wn(‘), (7) P(P +3)/2, regardless of the number of COSEBIs used. For a 0 total of N COSEBIs modes and P parameters, Γ is a matrix max whereP(ij) aretheE(B)-modeconvergencepowerspectraandthe withP(P+3)/2rowsandNmaxcolumns,wherethefirstP rows E(B) aretheCOSEBIsfirstorderderivativeswhilethelastP(P +1)/2 W (‘)aretheHankeltransformofT (ϑ) n ±n rowsare thesecondorderderivative ofCOSEBIswithrespect to Z ϑmax theparameters. W (‘)= dϑϑT (ϑ)J (‘ϑ) n +n 0 ϑmin Z ϑmax = dϑϑT−n(ϑ)J4(‘ϑ), (8) 3 RESULTS ϑmin Inthissectionweapplytwoanalysismethods,basedonCOSEBIs withJ andJ astheordinaryBesselfunctionsofzerothandfourth 0 4 and CCOSEBIs respectively, to measure the cosmic shear signal order. fromCFHTLenSdata.Beforeapplyingourmethodsonthedatawe WeuseEq.(6)tofindthetheoryvalueoftheE-modeCOSE- performedanumberoftestsincludingblindtestsonmockdata,as BIs as most theories provide us with an input power spectrum. However,inpracticetheshear2PCFsaremorestraightforwardto measurefromdata,hence,Eq.(4)andEq.(5)areusedtocalculate 2 http://sci.esa.int/euclid/,Laureijsetal.(2011) theE/B-modeCOSEBIsfromdataandsimulations. 3 http://www.lsst.org/lsst/ MNRAS000,1–16(2017) 4 M.Asgarietal. Table1.Effectivenumberdensityofgalaxies,neff (arcmin−2),ineach Table2.CosmologicalparametersforaflatΛCDMcosmology.Thefirst redshiftbinforlate-type(Blue)andall(All)Galaxies. rowcorrespondstoCFHTLenS+WMAP7bestfitvalues,thesecondrow belongstoPlanckbestfitvaluesforTT+lowPandthefinalrowshowsthe valuesfortheSLICSsimulations. z-bin Blue:neff All:neff [0.2,0.39] 1.507 1.811 σ8 Ωm ns h Ωb CF+WM 0.794 0.255 0.967 0.717 0.0437 [0.39,0.58] 1.265 1.646 Planck 0.829 0.315 0.9655 0.6731 0.0490 [0.58,0.72] 1.560 1.907 SLICS 0.826 0.2905 0.969 0.6898 0.0473 [0.72,0.86] 1.366 1.788 [0.86,1.02] 1.440 1.729 subjectofthiswork,isessentiallyunaffectedbytheredshiftmea- [1.02,1.3] 1.395 1.708 surementbiases. [0.2,1.3] 8.533 10.589 3.2 Cosmologicalmodels explainedintheAppendix.TheAppendixalsodetailsthetechnical The cosmological models we compare our results to are two flat aspectsofcalculatingtheCOSEBIsfromsheartwo-pointcorrela- ΛCDMmodels,withparameterscorrespondingtothebestfitval- tionfunctions. ues of CFHTLenS+WMAP7 (Heymans et al. 2013) and Planck TT+ lowP (Planck Collaboration et al. 2015a). We assume a pri- mordialpower-lawpowerspectrumandusetheBond&Efstathiou 3.1 Analysis (1984)transferfunctiontocalculatethelinearmatterpowerspec- InordertocompareourresultswiththepreviousCFHTLenSanal- trum. The non-linear power spectrum is estimated using the halo ysis as well as to test the data for systematic errors in a compre- fit formula of Smith et al. (2003). MacCrann et al. (2015) show hensivemanner,weanalysethedatainseveraldifferentways.We thatthischoiceofnon-linearfittingfunctiondoesnotsignificantly choosethethreeangularranges,[10,400],[400,1000]and[10,1000] change cosmological parameter constraints with CFHTLenS, in correspondingtosmall,largeandthecombinationofbothangular comparison to analyses that use improved non-linear correction scales. We also consider two sets of galaxy populations, all and schemes(Takahashietal.2012;Meadetal.2015). blue galaxies only. The blue galaxies are late-type galaxies and ThecosmologicalparametersaregiveninTable2,wherewe are expected to have a negligible intrinsic galaxy alignment sig- also show the parameters for the simulation products which are nal (see Heymans et al. 2013). This population is selected using usedforpipelineverificationsaswellasestimatingthecovariances. theirBayesianphotometricredshiftspectraltype,T >2(seeVe- The cosmological parameters which are presented in Table2 are, B lander et al. 2014, for the definition). In addition, we compare a σ8,thenormalizationofthematterpowerspectrum,Ωm,themean 2D,non-tomographic,analysiswitha6redshiftbinstomographic matterdensityparameter,ns,thespectralindex,h,thedimension- analysis. Table1 shows the redshift bins and their corresponding lessHubbleparameterandΩb,thebaryonicmatterdensityparam- effectivenumberdensityofgalaxiesfortheblueandallgalaxies. eter. Spatial flatness is assumed throughout out this work, which TheredshiftdistributionoftheCFHTLenSdataismeasuredusing meansthatΩΛ = 1−Ωm,whereΩΛ isthedarkenergydensity photometric redshift estimates as explained in Hildebrandt et al. parameter. (2012). Listed below are the configurations we used in this paper 3.3 Covariance whichbestresembletheprevioustwo-pointstatisticscosmicshear analysisofCFHTLenS. The covariance matrix of the COSEBIs is measured from mock galaxycataloguesconstructedfromtheSLICS,asuiteofN-body • Heymans et al. (2013) performed an analysis with a set-up, simulationsdescribedinHarnois-Déraps&vanWaerbeke(2015). whichcorrespondstothetomographic[10,400]angularrangewith The mock galaxy population algorithm, detailed in Joudaki et al. allgalaxies.Theymodelledgalaxyintrinsicalignmentswithasin- (2016),isdesignedtoreproducethepropertiesoftheCFHTLenS gleparameter,astheintrinsic-shearsignalisnon-negligiblewhen catalogues. These new mock catalogues are updated versions of allgalaxiesareconsideredintomographicbins. thoseusedinthepreviousanalysisoftheCFHTLenS,whichoffer • Kitchingetal.(2014)usedlargescales(roughlythe[400,1000] betterprecisionespeciallyatlargeangularscales,sincetheboxsize range) with blue galaxies. They used 3D cosmic shear analysis ofthesimulationsisL=505Mpc/h;whichissignificantlylarger in Fourier space which is approximately equivalent to our tomo- thanthesimulationsetusedformodellingtheearlierCFHTLenS graphicanalysis. measurements(L=(147,231)Mpc/h),hence,thenewsimulation • Kilbinger et al. (2013) used a large range of scales for their set is less affected by suppression of the large-scale variance by analysis which is close to the [10,1000] range we consider. Their finiteboxsizeeffects.Furthermore,weuse497incomparisonto analysisconsideredallgalaxieswithoutanyredshiftbinning. the184independentsimulationsusedintheearlierwork. InthisanalysiswechoosetoignoretheCFHTLenSphotomet- Estimatingcovariancesfromafinitenumberofsimulationsis ricredshiftbiasesanduncertaintiespresentedinChoietal.(2015) noisy which causes biases in the inverse covariance (see Hartlap inordertobeabletodirectlycompareourresultstotheCFHTLenS etal.2007).AssumingGaussianerrorsontheestimatedcovariance analyseslistedabove.Joudakietal.(2016)investigatedtheeffect matrix,Cˆ,theinversecovariancematrixisgivenby of the redshift biases and showed that the effect is small on the n −n −2 C−1 = sim obs Cˆ−1 , (11) cosmologicalinformation.TheB-modeanalysis,whichisthemain n −1 sim MNRAS000,1–16(2017) RevisitingCFHTLenSwithCOSEBIsandCCOSEBIs 5 where n and n are the number of simulations and observ- allpairsofgalaxieswithaseparationfallingwithintheϑbin.Each sim obs ables,respectively.Forn /n < 0.8,theaboveformulapro- galaxyhasaninversevarianceweightassociatedwithit.Lessnoisy obs sim duces an unbiased inverse covariance according to Hartlap et al. galaxyshapeshavealargerweightvalue,ergotheyaremoreim- (2007). It will however still have noise associated with it, which portantintheanalysis.ThedefinitionofwcanbefoundinMiller dependsontheratioofthenumberofobservablestothenumber etal.(2013). ofsimulations.Taylor&Joachimi(2014)extendedthisanalysisby Theestimated2PCFs,fromtheinputellipticitiesandtheiras- providingamoreaccuratecorrectionfortheparametercovariance sociatedweights,w,forredshiftbinsiandj,aregivenby matrixas, Pw w (cid:2)(cid:15)i(xxx )(cid:15)i(xxx )±(cid:15)i(xxx )(cid:15)i(xxx )(cid:3) C = nsim−nobs−2 Cˆ , (12) ξˆ±ij(ϑ)= a b t aPtwbw x a x b , (15) par n −n +n −1 par a b sim obs par where(cid:15) (xxx )arethetangential/crossellipticitiesatpositionxxx , where C is the parameter covariance matrix and n is the t/x a a par par withrespecttothereferenceframeconnectingthepairsofgalaxies numberofparameterstobeestimated.Applyingthiscorrectionto involved.ξˆij(ϑ)isthendividedby1+K(ϑ)tofindanunbiased C resultsinaslightlysmallercovariancematrixincomparison ± par estimate. totheHartlapetal.(2007)method,forn <<(n −n ),but par sim obs To estimate the 2PCFs, we use Athena4(see Kilbinger et al. thereisstillnoiseassociatedwithit.Sellentin&Heavens(2015) 2014)atreecodethatcalculatessecond-ordercorrelationfunctions extendedthisanalysisfurthertomitigatecovariancematrixestima- frominputgalaxycatalogues.Theopeninganglethatweuseis0.02 tionuncertaintiesbymarginalisingoverthetruecovariancematrix radians,whichshowsnosignificantdifferenceswithabruteforce givenitsestimatedvalue.TheyshowimprovementsovertheHart- (openingangle=0)estimation. lap et al. (2007) and Taylor & Joachimi (2014) estimate, by not- Theestimated2PCFsaretheninsertedintoEqs.(4)and(5)to ingthattheircorrectedcovariancematrixdistributionisnolonger determinetheCOSEBIsEandB-modes,respectively(thedetailsof Gaussian. whichareexplainedintheAppendix).ThetheoryvaluesofCOSE- Inouranalysis,themaximumnumberofobservablesthatwe BIs are estimated using Eqs.(6) and (7) which relate the COSE- use is 7 × 21 = 147 COSEBIs modes, where 7 is the number BIs to the convergence power spectrum directly. In this analysis of COSEBIs modes in each redshift pair and 21 is the number weusethefirst7COSEBIsmodes,sinceAsgarietal.(2012)have of redshift pairs for the tomographic case. As a result the ratio shownthattheseareenoughtoessentiallycapturethefullinforma- n /n ≈ 0.3, which can cause about 7% errors in the esti- obs sim tionforupto7cosmologicalparameters5.Assumingtomographic matedinversecovarianceusingtheHartlapetal.(2007)correction. binseachredshiftbinpairwillhave7COSEBIsmodeswhichadds Thisvaluefortheerroronthecovariancematrixisacceptablefor upto147modesintotal.UsingthecompressionmethodinAsgari analysingCFHTLenSdataaroundthemaximumlikelihoodpoint. &Schneider(2015)wedecreasethisnumberto20. However,aroundthetailsofthelikelihooddistributiontheSellentin Fig.1showsthemeasuredCOSEBIsforasingleredshiftbin & Heavens (2015) correction becomes significant. Therefore, we usingallgalaxies.Thepanelsshowtheresultsforthethreeangu- applythiscorrectioninSect.3.5,wherewecalculatethep-values, lar ranges, [10,1000], [10,400] and [400,1000]. The symbols show primarilytoassessthesignificanceofthedetectedB-modes. theCOSEBIsmodesestimatedfromthedatawhilethetheoryval- ues are shown as curves. The COSEBIs modes are discrete and 3.4 Measurements thecurvesaredrawntoaidtheviewer.TheE-modeCOSEBIsare shownbyblacksquareswhiletheredcirclesaretheB-modes.The FollowingHeymansetal.(2012),weanalysethe129CFHTLenS B-modesareshiftedtotherighttoaidtheviewer.Theerrorsonthe fieldsthatpassedthesystematictests,representing75%ofthetotal dataareestimatedfromthesimulationsandarecorrelated(seethe observedarea. covarianceinFig.A3).AswewillseeinSect.3.5,theB-modesin Wecalibratethedatacorrectingforadditiveandmultiplicative thisplotareonlysignificantfortheangularscale[400,1000].The biasesbetweentheobserved,(cid:15) ,andthetrueellipticities,(cid:15) , obs true theoryE-modecurvesbelongtoCFHTLenS+WMAP7andPlanck modelledas bestfitvalueslistedinTable2.Wealsoseethatthehighestsignal- (cid:15) =(1+m)(cid:15) +c, (13) to-noiseratiocomesfromsmallscalesasexpected(seeAsgarietal. obs true 2012,forexample). where(cid:15)isacomplexqunatitydefinedas(cid:15) = (cid:15) +i(cid:15) ,where(cid:15) 1 2 1 Fig.2showstheestimatedCOSEBIsforthetomographiccase and(cid:15) arerealquantities. 2 with blue galaxies. The E/B-modes are separated into the upper In CFHTLenS analyses, c was measured to be zero and and lower triangle of the plot. Each panel belongs to a redshift 2×10−3 onaveragefor(cid:15) and(cid:15) respectively.Theoriginofthe 1 2 bin pair indicated at its corner. Similar to Fig.1 the measured E additivebiasisunknownanditsvalueiscalibratedfromthedata andB-modesareshownasblacksquaresandredcircles,respec- empirically. It is likely that the multiplicative bias, m, originates tively. The curves show the theory values of the E-modes for the from the effect of noise in shape measurements (see for example CFHTLenS+WMAP7andPlanckcosmologiesinTable2.Thean- Melchior&Viola2012).Itisestimatedfromgalaxyimagesimu- lations.Whiletheadditivebiasissubtractedfromtheobserved(cid:15) 2 directly,theeffectofthemultiplicativebiasisappliedgloballyas explainedinMilleretal.(2013).Themeasured2PCFsaredivided bythecalibrationfunction, 4 http://www.cosmostat.org/software/athena/ 5 DependingontheoriginoftheB-modesystematic,7COSEBIsmodes P 1+K(ϑ)= abwawPb(1+wmwa)(1+mb) , (14) mFuarythneortwboerkenisouregqhutiorecdatpotuterestadllifofefrtehnetsinyfsotermmaattiiocnscienntahreioBs-amndodheowsigtnhaely. ab a b impactthedifferentCOSEBIs.Forthepurposeofthispaper,however,we where wa and ma are the weight and the multiplicative bias as- match our B-mode analysis to the 7 modes that are optimal for E-mode sociated with a galaxy at position a. The sum is carried out over measurements. MNRAS000,1–16(2017) 6 M.Asgarietal. 5 Planckcosmologiesareshownasthebluesolidcurveandthered 4 EnCFHTLenS EnPlanck [10,1000] dashedcurve.NotethattheCCOSEBIsmodesarediscreteandthe theoryvaluesareconnectedforaneasiercomparison.TheB-modes 3 areshownonthesamescaleastheE-modes.TheCCOSEBIsare 2 designed to be sensitive to cosmological information about these 1 parameters.Therefore,theymaynotbeassensitivetotheB-modes in the data. As we will see for most cases that we have studied, 0 eveniftherearesignificantB-modespickedupbyCOSEBIs,the 1 B-modesarenotalwayssignificantwiththeCCOSEBIs.Theex- 1.5 ceptionisthe[400,1000]angularrangewhichshowssignificantB- En Bn [10,400] modeseitherway. 1.0 En(Bn) 0.5 10−10 3.5 Figure-of-meritandfitting 0.0 ToquantifythesignificanceofthemeasuredB-modesweestimate theirχ2valuewithzero, 0.5 X χ2 = BtC−1B, (16) B 3 [400,1000] whereBisavectorcomposedofB ,BtisitstransposeandC−1 2 n istheinverseoftheB-modecovariancematrix,estimatedfromthe 1 SLICSsimulations.Wealsoestimatetheχ2valuesfortheE-modes 0 comparedtothebestfitvaluesofCFHTLenS+WMAP7andPlanck 1 (seeTable2).Therawvalueoftheχ2 isnotparticularlyinforma- tive,evenwhenthedegrees-of-freedomisknown(seeAndraeetal. 2 2010,forexample).Henceinsteadweshowthep-valuesforthees- 3 1 2 3 n4 5 6 7 timatedχ2 values.Thep-valueshowstheprobabilityoffindinga χ2 valuelargerthantheoneestimated.Wechooseasignificance level of 99%, p-value=0.01, which corresponds to a deviation of about2.6σ foranormaldistribution.Recallthataχ2 distribution isskewedtowardssmallervaluesandasymptoticallyreachesanor- Figure1.MeasuredCOSEBIsfromtheCFHTLenSdataforasinglered- maldistributionforlargenumbersofdegrees-of-freedomasillus- shift bin using all galaxies. Three angular ranges are considered here. The dashed line shows the zero B-mode value. The Bn modes (red cir- tratedinFig.A6. Additionally,usinganinvertednoisycovariance cles)areshiftedtotherightforvisualassistance.TheEn(blacksquares) changes a χ2 distribution and hence the derived p-values, which are compared with their theoretical values given the Planck (red dotted weaccountforusingthemethodproposedbySellentin&Heavens curve) and CFHTLenS+WMAP7 (blue solid curve) cosmologies. The (2015). CFHTLenS+WMAP7theoreticalvaluesarebestfitvaluesforthe[10,400] Fig.4showsthep-valuesfortheCOSEBIsB versusn , n max angularrangewithtomography(seeHeymansetal.2013).Thevaluesof the maximum number of COSEBIs used starting from the first thecosmologicalparametersforthetheoreticalcurvesaregiveninTable2. mode.Thep-valuesareshownforthethreeconfigurationswhich NotethattheCOSEBIsmodesarediscreteandthetheoryvaluesarecon- are closest to the previous CFHTLenS analysis described in nectedtoeachotherforvisualinspection.Theerrorsareestimatedfrom Sect.3.1. The grey circles correspond to [10,1000] range without simulateddataexplainedinAppendix.A3.Notethatthedifferentmodes tomographyandwithallgalaxies,whichresemblesKilbingeretal. arecorrelated(seethecovarianceinFig.A3) (2013).Thebluesquaresbelongto[400,1000]angularrangewith tomography and blue galaxies similar to Kitching et al. (2014). ThediamondsconfigurationisthesameasHeymansetal.(2013), gularrangeconsideredis[10,1000].Unlikethesingleredshiftbin whereallgalaxiesintheangularrange[10,400]areconsideredand case,weseestatisticallynon-zeroB-modesinthisFigure. binnedinredshift.Inthisplotweseethatthep-valuesforthesingle Fig.3showsthefirstmeasurementofCCOSEBIsfromdata. redshiftbincasearealwaysabove0.01whichmeansthattheyare We use blue galaxies with 6 tomographic bins and the three an- insignificant. In contrast, on large scales the B-modes are always gular ranges to estimate the CCOSEBIs. Here we choose the 5 below0.01andaresignificant. Inaddition,thetomographicanaly- cosmological parameters in Table2 to compress COSEBIs into 5 sisusingthelowerangularrange,[10,400],alsoshowsinsignificant firstorderand15secondorderCCOSEBIs,usingthePlanckval- Bmodeswithap-valueabove0.01. WhenweuseCCOSEBIsthe uesasourfiducialcosmologytocalculatethecompressionmatrix B-modessignificancedecreases,aswewillseeinTable3. (seeEq.10).TheCCOSEBIsmodesarenamedaftertheparameters Table3 shows the p-values for all the cases that we have whichareusedtodefinethem,shownonthex-axis.Thefirstorder considered. The first four columns indicate the set-up, while the modesonlydependononecosmologicalparameter,whereas,the last six show the p-values for that set-up for, B = 0, E = n n second order CCOSEBIs depend on two parameters which could ECFHTLenS,E = EPlanck,Bc = 0,Ec = Ec,CFHTLenS and n n n bethesame.Forexample,thepointsrelatedtoΩ hshowthevalue Ec = Ec,Planck, respectively. The p-values for CCOSEBIs are m ofthesecondorderCCOSEBIsmodewhichisbasedonthederiva- onlyshownforthetomographiccaseswhereCCOSEBIsoffersa tivesofCOSEBIstoΩ andh.Theorderingofthemodesisarbi- compression. The n column shows the number of COSEBIs m max traryandtheapparentoscillationsinthefigurecanberearranged. modesineachredshiftbinwhichareusedintheanalysis.Weshow ThetheoryvaluesoftheCCOSEBIsforCFHTLenS+WMAP7and the results for both the first 2 and 7 COSEBIs. The p-values are MNRAS000,1–16(2017) RevisitingCFHTLenSwithCOSEBIsandCCOSEBIs 7 n n n n n n 1234 56 7 1234 56 7 1234 56 7 1234 56 7 1234 56 7 1234 56 7 15 z-11 z-12 z-13 z-14 z-15 z-16 Blue Galaxies 10 [1',100'] 5 Bn 6 z-bins 0 10 10 − 5 10 15 15 z-11 z-22 z-23 z-24 z-25 z-26 10 10 En 5 5 Bn 10 10 0 0 10 10 − − 5 5 10 10 15 15 z-12 z-22 z-33 z-34 z-35 z-36 10 10 En 5 5 Bn 10 10 0 0 10 10 − − 5 5 10 10 15 15 z-13 z-23 z-33 z-44 z-45 z-46 10 10 En 5 5 Bn 10 10 0 0 10 10 − − 5 5 10 10 15 15 z-14 z-24 z-34 z-44 z-55 z-56 10 10 En 5 5 Bn 10 10 0 0 10 10 − − 5 5 10 10 15 15 z-15 z-25 z-35 z-45 z-55 z-66 10 10 En 5 5 Bn 10 10 0 0 10 10 − − 5 5 10 10 15 z-16 z-26 z-36 z-46 z-56 z-66 10 En 5 EnCFHTLenS 10−10 0 EPlanck n 5 10 1234 56 7 1234 56 7 1234 56 7 1234 56 7 1234 56 7 1234 56 7 n n n n n n Figure2.MeasuredCOSEBIsfromtheCFHTLenSdatafor6redshiftbinsusingbluegalaxies.Theangularrange[10,1000]isusedhere.TheB-modes(red circles)areshownintheupperrighttriangle,whiletheE-modes(blacksquares)areshowninthelowerlefttrianglefortheredshiftbinpairsindicatedfor eachpanel.ThetheoreticalvaluesofEnareshownforthePlanck(reddottedcurve)andCFHTLenS+WMAP7(bluesolidcurve)cosmologies(seeTable2). NotethattheCOSEBIsmodesarediscreteandthetheoryvaluesareconnectedtoeachotherforvisualinspection.Theerrorsareestimatedfromthemock dataexplainedinAppendix.A3.NotethatthedifferentmodesarecorrelatedasshowninFig.A4. MNRAS000,1–16(2017) 8 M.Asgarietal. 10 Ec,CFHTLenS Ec,Planck µ µ 5 Ec µ 10−10 0 5 [1,100] 0 0 4 Bc 2 µ 0 10−10 2 [[11,,110000]] 00 00 4 6 4 2 Ec µ 0 10−10 2 4 [1,40] 0 0 3 2 Bc 1 µ 0 10−10 1 [1,40] 2 0 0 10 5 Ec µ 0 10−10 5 10 [40,100] 0 0 15 10 5 Bc µ 0 10−10 5 10 [40,100] 0 0 15 σ Ω n h Ω σ σ σ Ω σ n σ h σ Ω Ω Ω Ω n Ω h Ω Ω nn nh nΩ hh hΩ Ω Ω 8 m s b 8 8 8 m 8 s 8 8 b m m m s m m b s s s s b b b b CCOSEBIs mode Figure3.MeasuredCCOSEBIsfromtheCFHTLenSdatafor6redshiftbinsusingbluegalaxies.TheB-modesareshownasgreencircles.Theblackdashed lineshowswherethezerolinefortheB-modeslies.ThemeasuredE-modesareshownasblacksquares,whilethetheoryvaluescorrespondingtothebest fitvaluesforCFHTLenS+WMAP7andPlanck(seeTable2)cosmologiesareshownasbluesolidcurvesandreddottedcurves,respectively.Notethatthe CCOSEBIsmodesarediscreteandthetheoryvaluesareconnectedtoeachotherforvisualinspection.Theerrorsareestimatedfromsimulateddataexplained inAppendix.A3.Notethatthedifferentmodesarecorrelated(seethecovarianceinFig.A5). MNRAS000,1–16(2017) RevisitingCFHTLenSwithCOSEBIsandCCOSEBIs 9 0 (2013).However,forbluegalaxiesthecontributionfromintrinsic 10 alignmentisexpectedtobesmall,henceweexpectandfindagood -1 fittotheCFHTLenSvalues. 10 )max 10-2 3.6 SingleParameterFit 2n χ > 10-3 Weuseaverysimpleparametrizationtofitthetheorytodata,con- 2χ sistingofonefreeparameter.Wefinditsbestfitvaluebyminimiz- ( -4 P 10 All, 1 z-bins, [10,1000] ingitsχ2valueandtheerrortothefitcorrespondstotheparameter Blue, 6 z-bins, [400,1000] valueat∆χ2 = 1aroundtheminimumχ2.FortheB-modesthe 10-5 All, 6 z-bins, [10,400] singleparametermodelweuseisaconstant, 10-6 Bn =KB , and Bc =KBc , (17) 1 2 3 4 5 6 7 n for COSEBIs and CCOSEBIs, respectively. For the E-modes max the models are a constant, times the theory E-modes, with CFHTLenS+WMAP7 and Planck cosmologies. For COSEBIs Figure4.P-valuesforχ2 ofB-modecomparedtozeroversusthenum- theseare ber of COSEBIs modes. nmax denotes the number of COSEBIs modes fromn=1ton=nmax.Thep-valueistheprobabilityoftheχ2value E =KCFHTLenSECFHTLenS , (18) beinglargerthanthevaluefound,assumingBn =0isthemodel.Avery n E n smallp-valueshowsapooragreementbetweenthetheoryandtheestimated and values.Werejectthenullhypothesis(zeroB-modes)forp-valuessmaller than0.01,whichcorrespondstoasignificancelargerthan99%.Theblue En =KEPlanckEnPlanck , (19) squaresshowtheresultsforbluegalaxieswith6redshiftbinsforthelargest whereasforCCOSEBIs angularscales,thelightdiamondbelongtoallgalaxieswith6redshiftbins andsmallangularscales.Finallythegreycirclesshowthep-valuesforall Ec =KECcFHTLenSEc,CFHTLenS, (20) galaxies,asingleredshiftbinandthe[10,1000]range. and Ec =KEPclanckEc,Planck , (21) written in boldface where they are larger than 0.01 which corre- are the two models. The best fit and error values for K , sponds to the significance level within 99%. Looking at the B B columnandthesingleredshiftbincases,weseethattheB-modens KECFHTLenS, KEPlanck, KBc, KECcFHTLenS, KEPclanck are listed in Table4. The format of this table is the same as Table3. Null B- areonlysignificantatlargescales([400,1000]). Whenredshiftbin- modesresultinastatisticallyzeroK ,however,astatisticallyzero ningisconsidered,withtheexceptionofthe[10,400]casethereare B K isnotasufficientconditionforB-modestobezero.Therows B significantB-modesinthedata. TheB-modesarenotalwayscon- forwhichtheCOSEBIsB-modesareconsistentwithzerofromthe sistentbetweenthetwogalaxypopulationswhichhintsatacorre- p-valuetestareshowninboldface.SomeoftheK valueswhich B lationbetweengalaxycolourandresidualsystematics.Alsonotice are consistent with zero in this table correspond to significant B- thatthelargestscalesshowsignificantB-modesforallthedifferent modesfromthep-valuetest.ThisshowsthattheB-modepatternin setsofdataanalysed. thedataisnotalwayswell-modelledbyaconstantvalue. The Bc column shows the CCOSEBIs B-modes which are typically less significant than that of COSEBIs. As discussed be- fore,thisisduetothefactthattheCCOSEBIsarebasedonlinear 3.7 Comparisontopreviousanalyses combinationsofCOSEBIswhicharemostsensitivetocosmolog- icalparameters.Theyarethereforenotnecessarilysensitivetothe TheTables3and4allowustocompareourresultswiththepre- B-modeswhich,forCFHTLenS,appeartocanceltosomedegree vious CFHTLenS cosmic shear analysis. We first consider Hey- withthecompressedformofthestatistic.Consequently,tomeasure mans et al. (2012) who detail a systematics test using an E-B B-modesweneedtouseCOSEBIs,whichprovideacompleteset mode decomposition for three different two-point statistics; the offunctionsforthisanalysis. top-hatshearvariance,the2PCFandthemassaperturestatistics. ComparingtheECFHTLenSandEPlanckcolumnsweseethat Analysing angular scales from [10,600] applying no redshift bin- n n Planck provides a better match to the single redshift bin data ning,theyfoundnosignificantB-modes,whichisconsistentwith for all the cases6. However, when tomography is considered the ourresults. CFHTLenS cosmology provides a better match with the excep- Kilbinger et al. (2013) performed a two-dimensional analy- tionoftheverylargescales.Forbluegalaxiesat[400,1000]thep- sis of the datausing several cosmic shear methods, including the valuesforECFHTLenS andEPlanck arecomparable.Wealsonote COSEBIs.Theaimoftheirworkwastousealargeangularrange n n that for many of the tomographic cases, neither provide a good toestimatecosmologicalparameters,buttheyfaceddifficultieses- match.Whenallgalaxiesareconsideredweneedtoaddintrinsic timatingtheCOSEBIsfromtheirmockdata,knownastheClone alignmentcorrectionstoourmodelaswasdoneinHeymansetal. simulations.Themainreasonfortheirdifficultieswasthefactthat the accuracy of the simulations for very large angular scales is limited,duetothefiniteboxsize.Consequently,theydidnotuse 6 Hereweusep-valuesasaproxyforχ2 values,whichwouldbeused COSEBIsfortheirfinalanalysisofthedata.Hereweusedupdated insamplingtheparameterlikelihoodinatypicalcosmologicalanalysis.We simulations(SLICS)withbetteraccuracyforlargescalesanddid willnotattempttorejecteitherECFHTLenSorEPlanckusingthismethod notencountersimilarproblems.Wecomparetheirresultswithour n n orquantifytheirtension. [10,1000]angularrangewithallgalaxiesandasingleredshiftbin. MNRAS000,1–16(2017) 10 M.Asgarietal. Table3.P-valuesforχ2 ofBn=0,En=EnCFHTLenS,En=EnPlanck,Bc=0,Ec=Ec,CFHTLenSandEc=Ec,Planck.Thep-valuesdenotethe probabilityoftheχ2valuesbeinglargerthanthevaluesfound,assumingthemodeliscorrect.Eachrowcorrespondstoadifferentangularrange(θrange), groupofgalaxies(Galaxies),numberofredshiftbins(z-bins)andnumberofCOSEBIsmodes(nmax)consideredintheanalysis.TheCCOSEBIsp-values areonlyshownforthetomographiccasewherethenumberofCCOSEBIsmodesissmallerthanthatofCOSEBIs.TheP-valueswhicharelargerthan0.01 areshowninboldfaceandliewithinthe99%confidencelimit.SeeTableB1fortheχ2valuesanddegrees-of-freedomforeachentryinthistable. COSEBIs CCOSEBIs θrange Galaxies z-bins nmax Bn EnCFHTLenS EnPlanck Bc Ec,CFHTLenS Ec,Planck 2 4.5e−01 1.6e−01 3.4e−01 − − − 1 7 2.4e−01 4.5e−02 2.1e−01 − − − All 2 2.0e−03 3.3e−03 4.6e−04 3.5e−02 7.8e−02 1.1e−02 6 7 6.6e−03 6.1e−04 2.0e−04 8.0e−01 4.8e−04 2.5e−04 [10−1000] 2 2.1e−01 6.8e−02 3.5e−01 − − − 1 7 2.2e−01 2.1e−03 1.3e−02 − − − Blue 2 4.4e−04 3.5e−02 5.7e−03 6.0e−02 2.7e−01 6.7e−02 6 7 3.9e−03 9.7e−03 4.9e−03 4.7e−01 1.1e−01 3.5e−02 2 7.4e−01 3.2e−02 5.1e−01 − − − 1 7 7.4e−01 1.2e−01 5.0e−01 − − − All 2 3.6e−02 3.0e−03 1.3e−03 2.5e−01 3.2e−02 1.1e−02 6 7 2.0e−02 6.8e−03 1.9e−03 6.2e−01 4.2e−03 1.3e−03 [10−400] 2 6.5e−01 1.8e−02 8.8e−01 − − − 1 7 2.7e−01 3.2e−03 2.4e−02 − − − Blue 2 3.8e−02 2.4e−02 1.2e−02 7.0e−01 3.2e−01 2.0e−01 6 7 2.7e−01 8.9e−03 2.6e−03 7.6e−02 1.4e−01 5.7e−02 2 4.4e−03 4.0e−02 6.9e−02 − − − 1 7 2.4e−03 6.2e−02 8.7e−02 − − − All 2 1.1e−03 1.2e−02 1.6e−02 4.8e−02 4.5e−03 5.9e−03 6 7 1.8e−06 4.7e−06 5.3e−06 3.5e−02 6.4e−03 8.9e−03 [400−1000] 2 5.5e−03 1.5e−01 2.1e−01 − − − 1 7 2.9e−03 4.4e−02 5.5e−02 − − − Blue 2 3.6e−03 6.7e−02 7.4e−02 7.3e−04 1.1e−01 1.2e−01 6 7 1.2e−06 1.1e−04 1.1e−04 9.6e−04 1.7e−01 1.8e−01 TheyreportedinsignificantB-modeswhichisconsistentwithour modellingoftheintrinsicalignments,therearenootherdifferences results. betweenourstudyandHeymansetal.(2013). Fu et al. (2014) added three-point statistics to the Kilbinger Kitchingetal.(2014)restrictedtheirstudytolargescalesand et al. (2013) 2D analysis and found significant B-modes in their bluegalaxieswithredshiftinformation.Theyreportednosignifi- thirdorderstatistics.Ourfindingscombinedwiththeirsshowthat cantB-modes.AlthoughthescalestheyusedaredefinedinFourier there are still (high-order) residual systematic errors left in the spacewheretheyperformedtheiranalysis,theyroughlycorrespond CFHTLenSdata. tothelargescalesthatwehaveconsideredhere.Incontrasttotheir study we find very significant B-modes in the [400,1000] range. Onereasonforthisinconsistencycouldbethattheirmaskmodel lacks the precision to find the B-modes (see Asgari et al. 2016, 4 CONCLUSIONS formaskmodelling).Incontrasttopowerspectrumanalysis,mask InthispaperwerevisitedtheCFHTLenSdataandfoundevidence modelling has little or no effect on the estimation of COSEBIs. for systematic errors on large scales, and when the data is anal- Alternatively,thisinconsistencycouldbeduetothecomplexityof ysed in tomographic bins. We used COSEBIs, which is a robust translating the angular ranges used in a COSEBIs analysis to the efficientandcompletemethodforE/B-modeseparation.Weexpect Fouriermodesconsideredin3D-lensing. weaklensingtopredominantlyproduceE-modes,makingB-modes OurbestfitCFHTLenS+WMAP7fiducialcosmologycomes undesirable. Although the absence of B-modes does not guaran- fromHeymansetal.(2013),whousedthe[10,400]rangewithto- tee a perfect data analysis, it is a necessary condition for a sur- mography.TheydidnotincorporateanyE/B-modedecomposition vey like CFHTLenS. For future large scale and space based sur- methodsintheiranalysissincetheyused2PCFstofindtheirbest veys, where the measurement errors are significantly smaller, the fittingvalues.Fortheangularrangetheyused,wefindsignificant B-modescouldalsoindicateotherphysicalphenomena.Forexam- B-modeswhenallgalaxiesand7COSEBIsmodesareconsidered. ple we know that some intrinsic alignment models predict these Whenonly2COSEBIsmodesareconsidered,oronlyusingblue modes(seeBlazeketal.2011,andreferencestherein).Beforeper- galaxies, the B-modes are consistent with zero. Considering blue formingouranalysiswecarriedoutanumberofblindtestsoncos- galaxiesonlywhereintrinsicalignmentsarenotimportant,wesee mologicalsimulations,totesttheaccuracyofourpipelineswhich thatourmeasurementsfavourtheirbestfitvaluesincomparisonto arereportedintheAppendix.ThesignificanceoftheB-modeswe Planck.Inparticular,theCCOSEBIs matchestoboththeoretical found is highest for large scales, [400,1000], especially when the valuesforthiscase,howevertheCFHTLenS+WMAP7 isabetter galaxies are divided into redshift bins. They also depend on the match,asexpected.Asidefromourchoiceofobservables andthe galaxy population used in the analysis. We repeated our analysis MNRAS000,1–16(2017)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.