ebook img

Review of the Functions of Archimedes' Spiral Metallic Nanostructures PDF

21 Pages·2017·8.83 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Review of the Functions of Archimedes' Spiral Metallic Nanostructures

nanomaterials Review Review of the Functions of Archimedes’ Spiral Metallic Nanostructures ZhongyiGuo* ID,ZixiangLi,JingranZhang,KaiGuo,FeiShen,QingfengZhouand HongpingZhou* SchoolofComputerandInformation,HefeiUniversityofTechnology,Hefei230009,China; [email protected](Z.L.);[email protected](J.Z.);[email protected](K.G.); [email protected](F.S.);[email protected](Q.Z.) * Correspondence:[email protected](Z.G.);[email protected](H.Z.); Tel.:+86-186-5515-1981(Z.G.);+86-131-5515-4119(H.Z.) Received:28September2017;Accepted:18November2017;Published:22November2017 Abstract: Here,wehavereviewedsometypicalplasmonicstructuresbasedonArchimedes’spiral (AS)architectures,whichcanproducepolarization-sensitivefocusingphenomenonandgenerate plasmonicvortices(PVs)carryingcontrollableorbitalangularmomentum(OAM)becauseofthe relationbetweentheincidentpolarizedstatesandthechiralitiesofthespiralstructures.Thesefeatures can be used to analyze different circular polarization states, which has been one of the rapidly developingresearchingtopicsinnanophotonicsinrecentyears. Manyinvestigationsdemonstrate thatthemultifunctionalspiral-basedplasmonicstructuresareexcellentchoicesforchiralselection andgeneratingthetransmittedfieldwithwell-definedOAM.Thecircularpolarizationextinction ratio, as an evaluation criterion for the polarization selectivity of a designed structure, could be effectivelyimprovedbyproperlymodulatingtheparametersofspiralstructures. Suchfunctional spiralplasmonicnanostructuresarepromisingforapplicationsinanalyzingcircularpolarization light,fullStokesvectorpolarimetricsensors,near-fieldimaging,andsoon. Keywords: surface plasmon polaritons; circular polarization (CP); archimedes’ spiral structures; orbitalangularmomentum(OAM) 1. Introduction Polarization,asoneofthebasicpropertiesofthelight,iswidelyusedinmodernsensorsystems[1], bywhichtheimportantinformationofreflectingobjectscanbeobtainedandrecognizedbecausethere are different polarization characteristics for different objects. Additionally, this property can be also employed in other applications, including optical communications [2], imaging polarimetry [3] and microscopy[4]. Investigationsofacquiringthelinearpolarizationstatehavebeenperformedverywell fromthevisible[5,6]toinfraredrange[7].Incontrast,itisstillachallengetodirectlydetectandanalyze the circular polarization state, where a quarter wave plate and a linear polarizer are simultaneously needed.However,theutilizationofbulkyopticaldeviceshinderstheminiaturizationofintegratedoptical system[8,9].Theemergednano-scalemetallicstructures,whichproduceastronglypolarization-dependent opticalresponse,canbeapromisingalternativeforobtainingpolarizationinformation. Such Archimedes’ spiral plasmonic structures can be used as the circular polarization analyzer forreplacingaquarterwaveplatecombinedwithalinearpolarizer,whichwillofferthepossibilityfor potentiallyminiatureintegration.Atanearlytime,theArchimedes’spiralconfigurationsservedasspiral antennasduetothebroadbandcharacteristicsascircularly-polarizedradiators[10–13],whichcanalso provideanewideafortheunderlyingpolarization-dependenteffect.Inrecentyears,moreattentionhas beenpaidtotheArchimedes’spiralstructurewithregardtoitsfunctionalityforcircularpolarization analysisandgeneratingarbitraryorbitalangularmomentum(OAM)underilluminationsofcircular Nanomaterials2017,7,405;doi:10.3390/nano7110405 www.mdpi.com/journal/nanomaterials USV Symbol Macro(s) Description 0392 Β \textBeta GREEKCAPITALLETTERBETA 0393 Γ \textGamma GREEKCAPITALLETTERGAMMA 0394 Δ \textDelta GREEKCAPITALLETTERDELTA 0395 Ε \textEpsilon GREEKCAPITALLETTEREPSILON 0396 Ζ \textZeta GREEKCAPITALLETTERZETA 0397 Η \textEta GREEKCAPITALLETTERETA 0398 Θ \textTheta GREEKCAPITALLETTERTHETA 0399 Ι \textIota GREEKCAPITALLETTERIOTA 039A Κ \textKappa GREEKCAPITALLETTERKAPPA 039B Λ \textLambda GREEKCAPITALLETTERLAMDA 039C Μ \textMu GREEKCAPITALLETTERMU 039D Ν \textNu GREEKCAPITALLETTERNU 039E Ξ \textXi GREEKCAPITALLETTERXI 039F Ο \textOmicron GREEKCAPITALLETTEROMICRON 03A0 Π \textPi GREEKCAPITALLETTERPI Nanomaterials 2017, 7, 405 2 of 22 03A1 Ρ \textRho GREEKCAPITALLETTERRHO 03A3 Σ \textSigma GREEKCAPITALLETTERSIGMA circular polarization analysis and generating arbitrary orbital angular momentum (OAM) under 03A4 Τ \textTau GREEKCAPITALLETTERTAU ilNluanmominataertiiaolsn2s0 1o7,f 7,c4i0r5cular polarization light (CPL). Th0e3 Aa5ngulaΥr mom\etnexttuUmps iolof nan optical b2eaomf2 1 GREEKCAPITALLETTERUPSILON contains the intrinsic component of the spin angula0r3 Am6 omenΦtum (\StAexMtP)h,i associated with the GREEKCAPITALLETTERPHI hpaonldareidznateisosn olifg chitrc(CulPaLr )p.Tolhaeriaznagtiuolnars,m anomd ethnetu emxtorifnasnico cp0o3tmAic7aplobneeanΧmt ocof nthta\eit neOsxAttChMhei ionrtrigininsiacticnogm fproonme nthteo f GREEKCAPITALLETTERCHI spiral phase profile of the beam around the axis of 0p3Ar8opagaΨtion. T\hteesxetP ssipiral structures have GREEKCAPITALLETTERPSI thespinangularmomentum(SAM),associatedwiththehandednessofcircularpolarizations,andthe brought about extensive investigations for optica0l3 A9applicΩations \tienx tOpmoeglaarization selection, GREEKCAPITALLETTEROMEGA peoxltarrinizsaicticoonm cpoonnveenrstioofnt,h pelaOsAmMonoicri gfoincuatsiinnggf aronmd stheleescptiiv0r3aeAl AtprahpapseinΪpgr o[f1i4le–\2ot0fe]xt.ht Ie obteadaimeraersoisundtheaxisof GREEKCAPITALLETTERIOTAWITHDIALYTIKA propagation.Thesespiralstructureshavebroughtaboutextensiveinvestig\"a{t\iotnexstfIoortao}pticalapplications USV inSpyomInlba trohilzias triMoevnacisereowl(es, c)wtioen f,irpsotllya rriezvatiieown csoevnevrearls inoann,opslatrsumcot0un3rAiecBsfD obceausscserΫidinp gtoionann Ad\r"sc{eh\litemecxteitvdUepestsir’la soppnp}irinagl, [in14c–lu2d0]i.ng GREEKCAPITALLETTERUPSILONWITHDIALYTIKA 0392the puΒIrnet shiinsg\rtleeevx-itteuBwernt,aw Aercfihrismtlyedreevs’i eswpisreavl eslriatl (nAaSnSo)s, tmruuclttui0pr3elAseC-btGuaREsrEenKdC AάAoPISTnASLA,L EarTT c\hEh'Ry{iBmEb\TtrAeeiddxte saspl’pisrhpaai}lr pall,aisnmcloundiicn lgenthse, GREEKSMALLLETTERALPHAWITHTONOS 0393ap cuorneΓcesinntgrilce\ -attunexrntnuGalAamrmr acghriomovede essu’rsrpouirnaldesdlit b(yA ASSS)S,, mAurclhtiipm0l3eeA-DdtueGrRsnE’E KsApCAέiSPrITSaA,lL LgaETrTha\E'Rtyi{GbnA\MrtgMiesdAx (tAseppSsiGiral)ol ncp}olmasbminoendic wlietnhs , GREEKSMALLLETTEREPSILONWITHTONOS 0394ASS, Δa meta\lt-ienxstuDelalttoar-metal (MIM) waveguide combin03eAdE wGREiEtKhC AήAPITSALSL,E TtTh\E'Re{D E\aLtTbeAexrtreatna}ce of ASS, and so GREEKSMALLLETTERETAWITHTONOS a concentric annular groove surrounded by ASS, Archimedes’ spiral gratings (ASG) combined with 0395on, wΕhich c\atnex trEepasliilzoen the functions of selecting and0 3aAnFaGlRyEEzKiCnAίPgIT ALthLEeTT \E'Rp{EoP\SltIaLeOrxNitziaottiao}n states of CPL GREEKSMALLLETTERIOTAWITHTONOS 0396inAcSidS,eΖancmese.t a\Tlt-heinextssZeue ltanataonro-msterutacltu(MreIsM h)awvaev degisutiindcet csoumpbeirni0oe3drBi0twyG iRtiEhnEK CAmAΰPSIiTSnAL,iLatEhtTuTe\Er"Rai{ZzbE\TateAterixroatnunp csaeinlodofn AaacnSuatSle,y}aznindgs othoen , GREEKSMALLLETTERUPSILONWITHDIALYTIKAANDTONOS 0397CwPhLi ciΗhnccidanenr\ceteaeslx itwzEetitathh ehifguhn cetfifoicnisenocfys.e Ilnec atidndgitaionnd, athneayly cz0ai3nnBg 1gGtehRnEeEeKrpCaαAoPtIleTaA LrthLizEeTaT \EtotRipoeETxntAitcasaltlap htveaosrtoefxC liPgLhti nccairdreynincges . GREEKSMALLLETTERALPHA 0398 ThesΘe nano\stteruxtcTthuerteas have distinct superiority in minia0t3uB2rizGRaEtEiKoCAnβPITaAnLLdETTa\EtRneTaHxlEtyTbAzeitnag the CPL incidences GREEKSMALLLETTERBETA well-defined OAM. The construction of double spiral gratings with central hole dynamically 0399 withΙhighef\ftiecxietnIoctya.Inaddition,theycangeneratetheo0p3tBi3caGlREvEKoCrAγtPeITxALlLiEgThT\EttReIcOxaTAtrgrrygianmgmawell-definedOAM. GREEKSMALLLETTERGAMMA 039AsTwhietccΚhoenss tthrue\c titenioxcntiKdoaepfnpdat oCuPbLle isnptiora tlhger abteinagmssw witihthc ednitfrfaelrehno03tle BO4dAGyRnEMEaKsmC AδdPiIcTuAaLelLl EytToT\sE wtRteKhiAxtePtcP dAheeexlsttratah eOiAncMid eonrtigCinPaLtiinngto GREEKSMALLLETTERDELTA 039Bfrthomeb Λtehaem sspwi\rtiaetlhx tgdLeaiofmfbmedraeetnrty OstAruMcstudrue.e Ttoheth ienterxotdrauOctAioMn oo0f3r Bitg6hienGR aEsEtyKinmCAζgPmITfAreLotLmrETiTc\Et tRhbeLAerxMotsDzkApeeitnraa lAgrecohmimeetrdyesst’ rsupcitruarle . GREEKSMALLLETTERZETA 039CgTehoemΜinettrroyd sutr\cuttiecoxtntuMoruef tshuepspylmiems tehtrei cobprpookretnuAnirtcyh itmo endaenso’-sspc0iar3laBel7 goGepRoEtEmiKcCaeAηltP rITeyAlLesLmtErTTu\eEtcRnteMtuxUstr efeotsaru spepnliseinsgth aepopplpicoarttiuonnisty GREEKSMALLLETTERETA 039Dand Νconven\iteenxtt Nuoptical integration for measuring0 3Bfu8lGlR EESKtCoAθPkITeALsL-EvTTe\EctRetNoUxtrtsh eotaf the polarization GREEKSMALLLETTERTHETA tonano-scaleopticalelementsforsensingapplicationsandconvenientopticalintegrationformeasuring 039EinformΞation.\ textXi 03B9 GREEKCAιPITALLETT\EtReXIxtgriota GREEKSMALLLETTERIOTA 039F fullSΟtokes-v\etecxtotOrsmiocfrothnepolarizationinformation. 03BA GREEKCAκPITALLETT\EtReOMxItCkROaNppa GREEKSMALLLETTERKAPPA 03A02. ThΠe Polar\itzeaxttioPin-Sensitive Mechanism 03BB GREEKCAλPITALLETT\EtRePIxtlambda GREEKSMALLLETTERLAMDA 03A1 2. ThΡePola\rtiezxattRihoon-SensitiveMechanism 03BC GREEKCAμPITALLETT\EtReRHxOtmu GREEKSMALLLETTERMU 03A3 TΣThhee sscchh\teeemmxtaaSttiiiccgm dadiaiaggrarammo foaf sian gslien-gtuler-ntulerfnt -hleafnt-dheadnAdeSdS GiRnAEEtSKhSCAe PIciTnAyL lLitEnhTTd\eEtrR ieSccIxGyaMtllAmicunogdroerriedckainl acteosoirsdiilnluasttersa tiesd 0033AA45idlilenussFigtirΥΤgnau toerfed t 1hi,ne\\a tt FAneeixxdSgttSuTUitap rscuseaig nl1eo, o anamlnsoedt briytes c cgaaenlloebmde etdthreeys c pcrlaiabnse mdbeoi nndUieaScs VsvcirmoirbpteSe00ld33yxeBBm ailDEnelbgnGG oaRReslEE bEE s(KKriPCCmaMAAξνViPPcpIITTLaAAlfc)LLeor.LL orEEaTTTm(lTTsh\\gEE).ttRReeeeTUT bAPxxdUShrttIiLaxnesOiuitNgca enfoocmerm re .tf rrTiochmde egtsheiego nmceoenfttrteihcre DescripGGtiRRoEEEEnKKSSMMAALLLLLLEETTTTEERRNXIU 000333AAA678orAatPfh dVSteihSLuseΨΦΧ,scl i aaPtonnVfwd taLihlΛt seht\\\oo tttiPts eeebhtVxxxtheettthLePCPcae, hhsa zsiiiawllinlimetad dvwu Λettilhh teihaesn l gpttahhtlnhaeegs woamlfezaoisvϕmuneriiulcsfeatnvghcgoiaevrtlp hetaenl naoxsbfgl myelseunor rsφ00n=f11( a11ipPrcs78o0Ve gl −Lpaivr)l000a.iΛe333tsTnoBCCĘmėF01×hn besoGGGyRRRϕnU(dEEE 0SEEE/ riKKKS1pP s2CCC1=VotP\\πAAAρο7 aPPPl.krsIIIanwTTT{{0)AAA reEc−LLL[ih}}SeLLLt 2ΛEEEoey1rTTTmrnTTT ,\\\ėEEEe×f2stttRRRbr 2 eeeroPCPφo(HS]H0xxxSmIl.I/Ittt2PioprsπPmihthtM\io shw.ce){are [hecco2i}nreen1onri,(e2tts ie)2arr]0l. o irsf a dtthhiuee sPinoViftLitahtloe LLAATTIINNSCMAPAILTLGGGARRRLLEEEELEEETEKKKTTETSSSREMMMREAAAEWLLLDLLLLWAITTLLLeIHTIEEENsHTTTDcTTTSOOMEEErTGRRRiAOApOPRLNBIHLMtOEOiLIKVCoEERTnOTENREWITHDOTABOVE 03A9 Ω \textOmega 0119 03Cę2 GRE0EK1C1\\Aς8PckITa{ApeLi}LtETaTĘl\\EottRgeeOMoxxnEttGegvAkra\\{srkcEis{a}giEpmg}iamtaalogonek{E} LATINSMALLGRLEEETKTESRMEAWLLLAITTLHIENTOTCGEAORPNIFTEIAKNLALLESTIGTMERAEWITHOGONEK 0000033333AAAAAABCDE ΫάήέΪ \\\\\\t""'''e{{{{{x\\\\\ttttttIeeeeeoxxxxxttttttaIUaeedoplptitspsaea}ihir}laleo}osnni}}s 000111111ABC 0000033333CCCCCĜĚě34567 GGGGGRRRRREEEEE0000EEEEEKKKKK1111CCSSS1111MMMφ\\\\\\AAσυχτ9ABCPPAAA^ccvcvIILLLTT{aa{a{LLLAAGppEpeLLLLLi}i}}iEEELLTTTtttEETTTTTaaaEEETTĜĚlll\\\\\RRRęěEEcoctttttRRAEEPTigaLeeeeeIUOASPProrxxxxxITHLSWcnoAtttttAOILIuenstugcNTWWOHmk{iaprhNWIITT\\\\\\f{ETguspiIWHHOTkcvcv^le}mihHIDNTT{a{a{{e}aliIOOHTAepEpeGxoNSOLD}i}i}}{nONYIttASGOTILSaa}KYllATocIKgaAornoenk{{Ee}} LLLAAATTTIIINNNCSCMAAPPAIILTTLGGGGGAARRRRRLLLEEEEEELLEEEEETEEKKKKKTTTETTSSSSSREEMMMMMRREAAAAAEGWLLLLLLLLLLLLLLWAAAAIWTTTTTLLLLLIHITIIIIEEEEETNNNNHTTTTTHCTTTTTSCSCACCMMEEEEEAARAIRRRRRRPPAAORIICSTUPCLLNTTOIAHUHLLPAAGNUISMILLLLMILEEFLLAOTTLEETTENTTEEXTTRREERREEEGWWWIIWTTIHHITTHHOCAGCCROAIRONRCNEOUKNMFLEX 03AF ί \'{\textiota} 011D ĝ GREEKSM\A^L{LgL}ETTERIOTAWITH\TcOaNOpSitalcircumflex{G} LATINSMALLLETTERGWITHCIRCUMFLEX 03B0 ΰ \"{\textupsilonacute} 011E ĞGRE0EK1S1M\DAuL{LGL}ETTEĝRUPSILONW\IT^H{DgI}ALYTIKAANDTONOS LATINCAPITALLETTERGLAWTIITNHSBMRAELVLELETTERGWITHCIRCUMFLEX 03B1 α \textalpha GRE0EK1S1M\EAcLaLpLiETtTaEĞlRbArLPeHvAe{\Gu}{G} 18 LATINCAPITALLETTERGWITHBREVE 03B2 β \textbeta 011F ğ GREEKSM\AuL{LgL}ETTERBETA \capitalbreve{G} LATINSMALLLETTERGWITHBREVE 03B3 γ \textgrgamma 0120 ĠGRE0EK1S1M\FA.L{LGL}ETTEğRGAMMA \u{g} LATINCAPITALLETTERGLAWTIITNHSDMOATLALBLOEVTTEERGWITHBREVE 00003333BBBB4678 FaηδθζFt ithgihgiuniunregr ge o1o\\\\l1.dl tttt.SdeeeecSfi xxxxfhclittttmhledzetmmeethe.mlaet.a tatataaitcic ddiaiaggrraamm oof faa ssiningglele--ttuurrnn lleefftt--h000h111aa222nn123ddeedd AArĢrġģcchhGGGGiiRRRRmmEEEE000EEEEeKKKKe111ddSSSS222MMMM\\\\\012eeAAAAccc.c ssLLLLa{a{{’’LLLL pGpggssLLLLi}}i}EEEEppTTTTttiiTTTTaarrEEEEĠĢallaġRRRRdcllDZET HTEEoessATELtdllATTiiaiAAttcl ((clAA\\\\\eaS.c.ccSn{S{a{{atGS)GpgGp{}) }i}}iGeett}ttcaachllhedcedoedtd taithhclocloueaun{ggtGhh{}a G} LLLAAATTTIIINNNSCSMMAPAAILLTLLALLLEELTTETTTEETRRERGGGWWLLLAAAWIITTTTTIHHIIITNNNHDCCSCEOCMAADTEPPAIDALIILTTILBLLAAAOLLLLVAELLETEETTTETTREERRGGGWWWITIIHTTHHDODCTEODTAIBALOLBVAOEVE 03B9 TιThhee mme\ectchehaxantngisrismimotssa oof fppoolalarirzizaatitoionn-s-seennssitiitvivee fofo0c1cu2us4siningg aanĤndd GgRgEe0EenK1nS2eM\3erA^arL{LatHiLt}nEiTngTEg ģROIOOATAAMM \fofco{rg rt}hthee AASSSS hhaavvee bbeeeenn LATINCAPITALLETTERHLAWTIITNHSCMIRACLULMLEFTLTEEXRGWITHCEDILLA 03BAeexxpploloκitietedd aad\deteqequxtuakataetpelpylay [2[233––2277].] .InIn ppaartritciuculalra,r ,ththee fifirsrst tsstutuddyy oonGnR Et0EhtK1heS2Me\ 4cAccLhaLhpiLriiEarTtTalaE ĤllRscKsuAiurPrPfrcAafuacmce\fe ^lp{eplHxal}{asHsm}moonn inindduucecedd bbyy LATINCAPITALLETTERHWITHCIRCUMFLEX 03BB theAλSSwa\streexptloarmtbeddain2006[25],inwhichthec0h12ir5alityoĥftGhREeEKsSyM\A^sL{tLehLm}ETTEiRsLdAMeDfiAn\ecdapbiytatlhceiricnucmifdleenx{tHC}PL LATINSMALLLETTERHWITHCIRCUMFLEX the ASS was reported in 2006 [25], in which the chirality of the system is defined by the incident 03BC assocμiatedw\tietxhtmthueincidenttopologicalcharges0a1n2d6 theroĦtaGRtEi0EnK1gS2M\5dABL{iLrHLe}EcTTtEiĥRoMnUsof\th^{eh}incidentCPLalong LATINCAPITALLETTERHLAWTIITNHSSMTARLOLKELETTERHWITHCIRCUMFLEX CitPsLp arsospoacgiaa\ttetindexg wtmdiutighrre etcehtkieo innsc,iadsenwt etlolpaoslothgeicAalS cShaasrsgoecsi aantedd twhei trh0o1tt2ah\6tteienxogtrH ddbeĦairrreocftitohn\eBs{ soHt}fr uthcteu irnaclidazeinmt uCtPhLa l LATINCAPITALLETTERHWITHSTROKE 03BDalongν its pr\otpeaxtgnauting directions, as well as the ASS assocGRiEaEtKeSdM\At LewLxLtEiTHtThsElR aNthsUhe or\dteexrt Hobfa rthe structural 0033BBEFarpvizgaoihmrlaita urξοctitiizhoracantuli. olvTan\\ahrtt (reeepRiaxxCoCtttliPxoPaoimL)rniiac.zi srnaTodcthnioolenen sfC ti(dPcReiLCrrc eiPusd)l actaoornnpcdsao irlldareyerfitrzt ehcadietr ictoSounA lcaM(aL0rr1 Corp2yP7fo )σlt,ahr=reeiz ssSpiaħAte,icGGMowRRtniEE0hv EE oKK1(eeSS2LfrlMM\\\ 7yeCσAABtt,LL{ee sPLLa=hxxiLLn) }ttEE=s,TTchd iTTħrbr+EEehaħRR,1 rsXOwiIMpasIChenPRcedOltNrai−e\\nvtB kes1e{li’xh y=sft}o ,cH +rosa1ltnn haadssenth aħrdni gti−shh1 tP dfcloiiarvrnc itudkhl’eeasd r LATINSMALLLETTERHWLAITTHINSSTMROAKLLELETTERHWITHSTROKE 03C0cboyns2taπn[t2 h6] d.\iTtvehixdetepgdie bnye ra2tπe d[2p6l]a. sTmhoe ngiecnveorartteexd cpaln0a1s2bm8eocnhica rvaĨocGrtRteEeErKxizS M\ceA~adL{nLILb }EbTyeTE tRcoPhIpaorlaocg\\tetticeerixxazttlechcdrbhha rbaryg teopjpovlowghicoasle LATINCAPITALLETTERIWITHTILDE 0033CC12cfhoarrmgρςeu ljapv [w28h\\]ttoceesaxxettn rgfhrbooserimgemxuaplar e[s2s8e]d cabny :be expresjsed= b0ym1: 2+9 l +sĩ GGRREE0EEKK1SS2MM\\8AAc~LLa{LLpiLLi}EETTtTTaEElRRĨtRFIHiNOlALdSeIG{M\\IA~c}{aIp}italtilde{I} (1) LATINSMALLLETTERIWLIATTHINTICLDAEPITALLETTERIWITHTILDE pv i i \textvarsigma 012\9~{\i} ĩ \~{i} LATINSMALLLETTERIWITHTILDE 03C3 wherσemisa\tpeaxrtasmigemtaerdenotingthechiralityofth0e1P2AVLandĪsGRaEEnKdSM\lA=L{LrIeL}EpTTrEeRsSeIGnMtAth\e~{S\AiM} andOAMofthe LATINCAPITALLETTERIWITHMACRON i i 03C4 incidτentph\otteoxntst.auOwingtothegeometricasymmetry,suchGaREs0EpK1S2iM\rAAacLalLpsLiEtTtrTauElRĪcmTtAauUcrreonc\{a=In{}Ip}rovideextraphase LATINCAPITALLETTERIWITHMACRON 03C5 υ \textupsilon 012B ī GREEKSM\A=L{LiL}ETTERUPSILON \capitalmacron{I} LATINSMALLLETTERIWITHMACRON 0033CC67 φχ \\tteexxttgcrhpihi 012C Ĭ GGRREE00EEKK11SS22MM\\\BCAA=ucLL{{aLL\IpLLi}iEETT}tTTaEElRRĬībPCHHrIIeve{\\\I==u}{{{i\I}i}} LATINCAPITALLETTERILLWAAITTTIIHNNBSCMRAEPAVILTELALLELTETTETRERIWIWITIHTHMBARCERVOEN 012D ĭ \u{i} \capitalbreve{I} LATINSMALLLETTERIWITHBREVE 012\Du{\i} ĭ \u{i} LATINSMALLLETTERIWITHBREVE 012E Į \k{I} \u{\i} LATINCAPITALLETTERIWITHOGONEK 18 012\EcapitalĮogonek\{kI{}I} LATINCAPITALLETTERIWITHOGONEK 012F į \k{i} \capitalogonek{I} LATINSMALLLETTERIWITHOGONEK 012\Fcapitalįogonek\{ki{}i} LATINSMALLLETTERIWITHOGONEK \k{\i} \capitalogonek{i} 0130 İ \.{I} \k{\i} LATINCAPITALLETTERIWITHDOTABOVE 013\0capitalİdotacc\e.n{tI{}I} LATINCAPITALLETTERIWITHDOTABOVE 0131 ı \i \capitaldotaccent{I} LATINSMALLLETTERDOTLESSI 0132 IJ 013\1IJ ı \i LATINCAPITALLIGATURLEAITJINSMALLLETTERDOTLESSI 0133 ij 013\2ij IJ \IJ LATINSMALLLIGATURELIJATINCAPITALLIGATUREIJ 0134 Ĵ 013\3^{J} ij \ij LATINCAPITALLETTERJLWATITINHSCMIRACLULMLFILGEAXTUREIJ 013\4capitalĴcircum\f^l{eJx}{J} LATINCAPITALLETTERJWITHCIRCUMFLEX 0135 ĵ \^{j} \capitalcircumflex{J} LATINSMALLLETTERJWITHCIRCUMFLEX 013\5^{\j} ĵ \^{j} LATINSMALLLETTERJWITHCIRCUMFLEX 0136 Ķ \c{K} \^{\j} LATINCAPITALLETTERKWITHCEDILLA 013\6capitaĶlcedill\ac{{KK}} LATINCAPITALLETTERKWITHCEDILLA 0137 ķ \c{k} \capitalcedilla{K} LATINSMALLLETTERKWITHCEDILLA 0138 ĸ 013\7textkrķa \c{k} LATINSMALLLETTERKRLAATINSMALLLETTERKWITHCEDILLA 0139 Ĺ 013\8'{L} ĸ \textkra LATINCAPITALLETTERLLWATITINHSAMCAULTLELETTERKRA 013\9capitaĹlacute{\L'}{L} LATINCAPITALLETTERLWITHACUTE \capitalacute{L} 5 5 Nanomaterials 2017, 7, 405 3 of 22 j =m+l +s (1) pv i i where m is a parameter denoting the chirality of the PVL and si and li represent the SAM and OAM oNf atnhome atienrciailds2e0n1t7 ,p7,h4o0t5ons. Owing to the geometric asymmetry, such a spiral structure can pro3voidf2e1 extra phase compensation. The phase compensation mechanisms of the spiral structure under different incidences are illustrated in Figure 2. Figure 2a corresponds to the incident case of compensation.Thephasecompensationmechanismsofthespiralstructureunderdifferentincidencesare radially-polarized light, and Figure 2b,c corresponds to the CPL incidences with different chiralities illustratedinFigure2.Figure2acorrespondstotheincidentcaseofradially-polarizedlight,andFigure2b,c respectively for the proposed left-handed ASS. When the radially-polarized light or CPL correspondstotheCPLincidenceswithdifferentchiralitiesrespectivelyfortheproposedleft-handed illuminates the spiral plasmonic structure, the entire beam is in transverse magnetic (TM) ASS. When the radially-polarized light or CPL illuminates the spiral plasmonic structure, the entire polarization with respect to the slit wall, enabling SPPs excitation with initial phases from all beamisintransversemagnetic(TM)polarizationwithrespecttotheslitwall,enablingSPPsexcitation directions. The colored arrows indicate the propagating directions and the phase difference of the withinitialphasesfromalldirections. Thecoloredarrowsindicatethepropagatingdirectionsandthe generated SPP waves. As shown in Figure 2a, owing to the non-chirality of the radially-polarized phasedifferenceofthegeneratedSPPwaves.AsshowninFigure2a,owingtothenon-chiralityofthe light, the phase compensation is only provided by the geometric phase from the ASS whose chirality radially-polarizedlight,thephasecompensationisonlyprovidedbythegeometricphasefromtheASS iws −h1o.s Feocrh tihrael iCtyPiLs −in1c.idFeonrcteh, ethCePreL iisn cniod eOnAceM,t,h seore li i=s n0.o AOcAtuMal,lsyo, lth=e 0in.tAecrtaucatilolyn, tbheetiwnteeerna ctthioen inbectidweenetn i light and the anisotropic (inhomogeneous) nanostructure is the superposition of the SAM, the OAM theincidentlightandtheanisotropic(inhomogeneous)nanostructureisthesuperpositionoftheSAM,the and the ASS chirality on the SPPs’ interference. When the CPL carrying proper SAM illuminates the OAMandtheASSchiralityontheSPPs’interference.WhentheCPLcarryingproperSAMilluminates ASS, the ASS can act as a converter from the SAM to OAM [29,30]. When the rotation direction of theASS,theASScanactasaconverterfromtheSAMtoOAM[29,30]. Whentherotationdirectionof the spiral structure is the same as that of polarized incident light shown in the Figure 2b (namely, thespiralstructureisthesameasthatofpolarizedincidentlightshownintheFigure2b(namely,the the spiral structure and the incident light have the same chirality), the excited SPP wave carries the spiralstructureandtheincidentlighthavethesamechirality),theexcitedSPPwavecarriesthephase phase including the initial phase from the CPL and the geometric phase determined by the radius includingtheinitialphasefromtheCPLandthegeometricphasedeterminedbytheradiusmismatch. mismatch. In this case, the SPP waves reach the center of the ASS with opposite phases and Inthiscase,theSPPwavesreachthecenteroftheASSwithoppositephasesandinterferedestructively, iwntheircfherwe dilelsftorrumctitvheelyB,e wsshelicbhe awmillw foitrhma thtoep Boelossgeilc ablecahma rwgeitho faj top=ol2o.gWicahl iclehathrgeeR oCf Pjpvi n=c 2id. Wenhticlae steheis pv RCP incident case is given in Figure 2c, the SPP waves that arrive at the center of PVL have the same giveninFigure2c,theSPPwavesthatarriveatthecenterofPVLhavethesamephaseandtheninterfere phase and then interfere constructively, which will form the Bessel beam with a topological charge constructively,whichwillformtheBesselbeamwithatopologicalchargeofj =0.Thus,thegenerated pv obfe ajpmv s=f o0r. inTchiduesn, ttlhigeh tgwenitehraotpedpo sbieteamchsi rafolirty ihnacvideednitf felirgenhtt towpiothlo goipcaplocshiaterg cehsiarnadlitoyb vhiaovuesl yddififfefererenntt topological charges and obviously different field distributions. fielddistributions. Figure 2. Schematic diagram of the phase of the generated surface plasmon polariton (SPP) wave at Figure2. Schematicdiagramofthephaseofthegeneratedsurfaceplasmonpolariton(SPP)wave the virtual contour with the dashed black line inside the left-handed ASS by: (a) radial polarized atthevirtualcontourwiththedashedblacklineinsidetheleft-handedASSby:(a)radialpolarized lilgighht;t ;(b(b)) lelefft tcciirrccuullaarr ppoollaarriizzaattiioonn ((LLCCPP)) iinncciiddeennccee;; tthhee ttooppoollooggiiccaall cchhaarrggee ooff tthhee SSPPPP vvoorrtteexx iiss jjppvv == 22; ; ((cc)) rriigghhtt cciirrccuullaarr ppoollaarriizzaattiioonn ((RRCCPP)) iinncciiddeennccee;; tthhee ttooppoollooggiiccaall cchhaarrggee ooff tthhee SSPPPP vvoorrtteexx iiss jjppvv == 00. . Reproduced with permission from [28]. Copyright Springer, 2015. Reproducedwithpermissionfrom[28].CopyrightSpringer,2015. The above-mentioned relationship can be denoted by the angular momentum conservation law Theabove-mentionedrelationshipcanbedenotedbytheangularmomentumconservationlawand and the dominant vertical electric field of the SPP wave at the concentric position of the PVL, which thedominantverticalelectricfieldoftheSPPwaveattheconcentricpositionofthePVL,whichcanbe can be simply expressed by the Bessel function as: simplyexpressedbytheBesselfunctionas: EzE(zr(,rϕ,ϕ,,zz))∝∝EE00eexxpp((iikkzzzz))eexxpp(i((is(is+i +mm)ϕ)ϕ)J)(sJi+(smi+)m()k(ρkrρ)r) (2()2 ) wwhheerree kkρρa annddk zkzd deneontoeteth tehwe awvaevneunmubmebrerra draiadlitaol tthoe thceen cteerntaexri saaxnisd apnedr ppeenrdpiecnudlaircutolatrh teom thetea lmpeltaatle , prleastpee, cretisvpeelyc,ti(vre,lϕy), is(rth,ϕe)p oilsa rthceo oprodlainr actoeocrodrirneastpeo cnodrirnegsptoontdhienCg atrot etshiea nCacortoersdiainna ctoe(oxr,dy)in. ate(x,y). Ingeneral,thetransmittedintensitiesoftheASScanbesimulatedbyfinite-differenttime-domain (FDTInD :gFeDnTeDralS,o ltuhteio ntrsa)nosrmthitetefidn itienetelenmsietinets moeft htohde (FAESMS :CcaOnM bSeO LsiMmuulltaiptehdy sbicys )wfinitihtet-hdeifpferroepnetr tbimoue-nddoamryaicno n(FdDitiToDns: F[2D8T].DI nSoelxuptieornims)e onrt st,hteh feindiitfef eerleenmtetnrat nmsmetihttoedd (iFnEteMn:s iCtiOesM’ dSiOstLri bMuutilotinpshcyasnicsb)e detectedbyametallicaperturednear-fieldscanningopticalmicroscope(NSOM)fiberprobesystem[31]. Nanomaterials 2017, 7, 405 4 of 22 with the proper boundary conditions [28]. In experiments, the different transmitted intensities’ distributions can be detected by a metallic apertured near-field scanning optical microscope (NSOM) fiber probe system [31]. Nanomaterials2017,7,405 4of21 3. Different Structural Constructions 3. DifferentStructuralConstructions 3.1. Pure Archimedes’ Spiral Plasmonic Lens 3.1. PureArchimedes’SpiralPlasmonicLens The single-turn Archimedes’ spiral plasmonic lens was designed and investigated as a Thesingle-turnArchimedes’spiralplasmoniclenswasdesignedandinvestigatedasaminiature miniature circular polarization analyzer in 2009 by Q. Zhan [31,32]. The schematic diagram of a circular polarization analyzer in 2009 by Q. Zhan [31,32]. The schematic diagram of a single-turn single-turn left-handed Archimedes’ spiral plasmonic lens under CPL illumination is illustrated in left-handed Archimedes’ spiral plasmonic lens under CPL illumination is illustrated in Figure 3, Figure 3, in which the width of spiral slit is set as 200 nm. The spiral constant of r0 in the above in which the width of spiral slit is set as 200 nm. The spiral constant of r in the above algebraic algebraic formula was set as r0 = 2Λ, and the incident wavelength was chosen0 to be 808 nm. formulawassetasr =2Λ,andtheincidentwavelengthwaschosentobe808nm. 0 FFiigguurree 33.. SScchheemmaattiicc ddiiaaggrraamm ooff aa ssiinnggllee--ttuurrnn lleefftt--hhaannddeedd AArrcchhiimmeeddeess’’ ssppiirraall ppllaassmmoonniicc ssttrruuccttuurree wwiitthh CCPPLL iilllluummiinnaattiioonn.. AA ssiinnggllee--ttuurrnn lleefftt hhaannddeedd ssppiirraall ((LLHHSS)) sslliitt wwaass eettcchheedd tthhrroouugghh tthhee ggoolldd ffiillmm,, wwhhiicchh wwaass ddeeppoossiitteedd oonn tthhee ggllaassss ssuubbssttrraattee.. RReepprroodduucceedd wwiitthh ppeerrmmiissssiioonn [[3311]].. CCooppyyrriigghhtt AAmmeerriiccaann CChheemmiiccaall SSoocciieettyy,, 22001100.. SSuucchh aa ssppiirraall ppllaassmmoonniicc lleennss hhaass bbeeeenn iinnvveessttiiggaatteedd aannaallyyttiiccaallllyy aanndd eexxppeerriimmeennttaallllyy ffoorr iittss sseennssiittiivviittyy ttoo tthhee iinncciiddeennttC CPPLLp poolalrairziaztaitoinons.sW. Withithin icnrceraesainsignrga draiudsiuosf othf ethspe isrpalirsalilt ,sltiht,e tshtreu scttruurcetucaren cgaenn egreanteeraatpeh aa spehsahseif tshtoiftt hteo pthroe ppargoaptainggatSinPgP SwPaPv we,awveh,i cwhhwicihll wfinilal lfliynaaldlyju asdtjtuhset pthhea spehoafseth oef StPhPe SwPaPv ewaatvteh aet stthreu csttruurcatlucreanl tceern.tHere. nHcee,nscue,c hsuachm ai nmiaitnuiaretugreeo gmeoemtryetsrtyr ustcrtuucrteuprer opcreoscseessseths ethfee afteuarteuroef ofof cfuosciunsgintgh ethCeP CLPwLi twhitahg aiv geinvehna nhdaenddneedsnseisnst oinatoc oan cfionnefdinsepdo stpwoth iwlehdileef odceufoscinugsitnhge tChPe LCwPLit hwtihthe tohteh eorthhearn dheadnndeesdsninestos aindtoo nau dt-oshnaupt-esdhappoeindt ,pwoihnict,h wcahnicbhe cuasne dbefo ursseedle cfotirn gsetlheectpinogla trhizea tpioonlasritzaatetsioonf sCtaPtLesi nocfi dCePnLc eisn.cBideesnidceess,. fBoerstihdiess,t yfpore tohfissp tiyrpale polfa ssmpioranli cplleansms,othneicr eleisnsn,o thneereed itso naod jnuesetdth teo caednjtursatl tahlieg ncmenetnratl( aaxliiaglnlymseynmt m(aextriaicllsyt rsuycmtumreest[r3ic3 –s3t6r]urcetquureirse d[3t3o–a3l6i]g nretqhueicreendt etroo faltihgenc itrhceu lacrelnyt-epro loafr izthede cbiercaumlaarlnyd-ptohlearcizeendte rbeoafmth eanpdla stmheo nciecntleern so),f wthhei chplawsimllobnrioca dleenns)t,h we hreicahl awppillli cbartoioandsenin tphea rarellaell aimppalgicinagtio[3n7s] i.n parallel imaging [37]. TThhee nneeaarr--ffiieelldd iinntteennssiittyy ddiissttrriibbuuttiioonnss aarree sshhoowwnn iinn FFiigguurree 44aa,,bb ffoorr lleefftt--hhaannddeedd AASSSS uunnddeerr CCPPLL iilllluummiinnaattiioonnss,,w whhicihcha raerme emaesuasreudrebdy baym ae tmalleictaalpliecr atupreerdtunreeadr- fnieeladr-sfciaenldn isncgaonpntiincagl ompitcircoaslc ompiecr(NosScOopMe) (fNibSeOrpMro) bfei.bTehr epmroebaseu. rTedher esmueltassaugrreede wreeslulwltsi thagthreeet hweoerlelt iwcailtahn athlyes isthaesosrheotiwcanl inanFaiglyusries 4acs,d ,sehxocwepnt fionr Faigduarrek c4ecn,dte, reixncteepnts iftyord ais tdriabrukt iocennutenrd einrtRenCsPitiyll udmisitnriabtiuotnioans suhnodwern RinCFPig iullruem4ainbaetcioanu saest hsehmowetna lliinc Faipgeurrtue re4da NbSecOaMusefi btehrep mroebtealilsicm aopreersteunrseidti vNeStoOtMra nfsivbeerrs aplrcoobme pios nmenotsre[ 3s8e,3n9s]i.tivHeo wtoe vterra,nssuvcehrsaanl ceoxmpeproimneennttsa l[3p8h,e3n9o].m Heonwonevdeore, ssuncoht caonn terxapdeicrtimaecnotnafli npehdensopmoteinnotnh edooreesti cnaolta cnoanlytrsaisdsicint cae ctohnefpineeadk sdpeotet citned tshiegonraeltoicfatlh eanNaSlyOsMis fsiibnecrep rthobee pineatkh edfeotceucsterdeg sioignnuanl doefr tRhCeP NinScOidMen fciebiesrs tpilrlotbweo -itnim these hfiogchuesr rtehgainotnh uatnudnedr eRrCLPC Pinlciigdhetnincec iidse sntcilel. two-times higher than that under LCP light incidence. SSuucchh aa ssyymmmmeettrryy bbrrookkeenns strturucctuturereo fofth tehesp siprairlasll istlliet nlesncsa ncabne beae seilaysiflayb rfaicbartiecdatiendto ingtoold gfoilldm failnmd asnelde csteivleeclytivfoecluys fLocCuPs iLncCidPe inncceidaenndcRe CaPndin RciCdPen icneciindteonscpea itniatolly s-pseaptiaarlalyte-dsefpiealrdast.eBdy fimeledasn. sBoyf mNSeOanMs oofr NtwSoO-pMh ootorn tfwluoo-rpeshcoetnocne mfliucororsecsocpenyc[e4 0]m,tihcerossucrofapcye i[n4t0en],s itthyed issturribfaucteio ninstceannsbiteyd edtiescttreibdu.Ttihoengs ecnaenra tbede dSePtPesctperdo.p aTghaet inggentoewraaterdd thSePPcesn tperroopfatghaetipnlgas mtoownaicrdle ntshein tceernfetreer coonf stthruec tpivlaeslymwonitihc thleenssa mineteprhfearsee coorndsetsrturcutcivtievleyly wwiitthh tthhee ospapmosei tepphhasaes e,owr hdicehstlreudcttiovaelzye rwotihth-o rtdheer eovpapnoessicteen tpfhiealsde,d iwstrhiibcuht iolendw tioth aa zceernotrtahl-opredaekro revaadnoensucet-nsth afpieeldd sdecisotnrdib-uortdioenr ewvaitnhe sac encetnfiterladl dpisetarkib uotri oan ,dreosnpuetc-tsivhealpy.ed second-order evaneBsoctehntth feieeldxp deirsitmriebnuttaiolann, dreasnpaelcytitviceallyr.e sultsofsurfaceintensitydistributionsunderRCPandLCP incidencesmatchwellwiththesimulations[32]. ByadjustingthestructureparametersofPVLand incidentwavelength,theopticalfieldcanbefocusedintothefar-fieldregion,whichisdemonstratedby finite-differencetime-domainsimulationandexperiments[41]. Inthiswork,ther ofthesingle-turn 0 Nanomaterials2017,7,405 5of21 ASSissettobe2µm,andthefreespacewavelengthischosentobe405nm. Atightlyfocusedspot withthesizeof330nmnearlyat3.5µmfromthemetalsurfacecanbeobtained,whenthestructural chiralityisoppositethechiralityoftheCPLincidence. Thisfocusingenhancementinthefar-field regionisbecauseoftheshortwavelength[42,43]andtheconstructiveinterferenceoftheSPPwave atthecenteroftheplasmoniclens. Thesefar-fieldpropertiesmakeitpossibletoprobethesignalof sampleinthefar-field,thereforetakingtheplaceofconventionalnear-fieldopticaldevices. which Nsuanffoemratferroiamls 2a01v7e, 7r,y 40s5h o rtworkingdistance. 5 of 22 FFiigguurree 4.4.M eMaseuarseudrende arn-feiaerld-fisecladn nsicnagnonpintigc alomptiiccraols compiecr(oNsScoOpMe )i(mNaSgOeMsa) ttihmeaagire/sg oaldt itnhteer faacier/(gao,bld); iRnetperrofadcuec (ead,bw);i tRhepperromdiusscieodn fwroitmh [p3e1r]m,Ciosspiyornig fhrotAmm [3e1ri]c, aCnoCphyermigihcat lASomceiertiyc,a2n0 1C0h.eAmniaclaylt iScaolccieatlcyu, l2a0ti1o0n. Asunrafalyceticinatle ncaslictyuldaitsitornib usutirofnac(ec ,din);teRnespirtoyd duicsetdribwuittihonp e(rcm,dis);s iRonepfrroomdu[c3e2d], wCoitphy rpigerhmtOispsitoicna lfSroomcie t[y32o]f, ACompeyrriciga,h2t 0O09p.tFicoarl aSnocLiHetSy loefn sAsmtreurcitcuar,e 2u0n09d.e Fro(ar ,ca)nR LCHPSi llleunms isntartuiocntuarne dun(bd,der) L(aC,cP) iRllCumP iinllautmioinn.ation and (b,d) LCP illumination. 3.2. Multiple-TurnSpiralSlit Both the experimental and analytical results of surface intensity distributions under RCP and Afterthesingleturnspiralslitwasinvestigated,theperformanceofmultiple-turnASSshownin LCP incidences match well with the simulations [32]. By adjusting the structure parameters of PVL Figure5wasreportedin2011[44]. Basedonthesamephasematchingtheory,suchamultiple-turn and incident wavelength, the optical field can be focused into the far-field region, which is spiral structure works in a more effective and practical way for the application of plasmonic lens demonstrated by finite-difference time-domain simulation and experiments [41]. In this work, the r0 becausetheincreasingturnswillimprovethecouplingeffectsofthegeneratedSPPwave. of the single-turn ASS is set to be 2 μm, and the free space wavelength is chosen to be 405 nm. A Theschematicdiagramoftheleft-handedfive-turnspiralslitetchedthrough300-nmsilverfilm tightly focused spot with the size of 330 nm nearly at 3.5 μm from the metal surface can be obtained, asaplasmoniclensisshowninFigure5a. TheRCPilluminatesalongthenegativez-coordinateon when the structural chirality is opposite the chirality of the CPL incidence. This focusing thestructurewiththewavelengthof660nmasdepictedinFigure5b. Figure5cillustratesthephase enhancement in the far-field region is because of the short wavelength [42,43] and the constructive retardationsofthegeneratedSPPwavealongthepropagationdirectionwithcolorfularrows,which interference of the SPP wave at the center of the plasmonic lens. These far-field properties make it meansthattheexcitedSPPwavecarryingtheinitialphaseattheASSexperiencesphaseretardations possible to probe the signal of sample in the far-field, therefore taking the place of conventional proportionaltothedistancefromtheslittothecenterwhenitpropagatesfromtheslittothecenterof near-field optical devices. which suffer from a very short working distance. theASS,asweanalyzeabove. Additionally,theywillkeepthesamephaseoncetheyreachthecenter oftheASSandfinallyleadtoaconstructiveinterferencepattern. 3.2. Multiple-Turn Spiral Slit The FDTD simulation results for such multiple-turn ASS demonstrate its advantages for After the single turn spiral slit was investigated, the performance of multiple-turn ASS shown generatingahighquality,zero-orderevanescentBesselbeamandrelativehighfocusingdepthofthe in Figure 5 was reported in 2011 [44]. Based on the same phase matching theory, such a focusspotunderRCPillumination. WhileundertheLCPincidence,adarkcenterwillbeobtained, multiple-turn spiral structure works in a more effective and practical way for the application of asexpected. Thus,suchmultiple-turnASSwillbequiteusefulindetectingthepolarizationcharacters plasmonic lens because the increasing turns will improve the coupling effects of the generated SPP oftheincidentCPL.Nevertheless,afactshouldbenotedthattheintensitywillreachthemaximum wave. whentheturnsareincreasedtobefiveowingtothelimitationofthepropagatinglengthoftheSPP The schematic diagram of the left-handed five-turn spiral slit etched through 300-nm silver wave. Suchamultiple-turnASScanfindpotentialapplicationsforfocusingbeams,intensityactuating, film as a plasmonic lens is shown in Figure 5a. The RCP illuminates along the negative z-coordinate CPLpolarizationanalysis,andsoon. on the structure with the wavelength of 660 nm as depicted in Figure 5b. Figure 5c illustrates the phase retardations of the generated SPP wave along the propagation direction with colorful arrows, which means that the excited SPP wave carrying the initial phase at the ASS experiences phase retardations proportional to the distance from the slit to the center when it propagates from the slit to the center of the ASS, as we analyze above. Additionally, they will keep the same phase once they reach the center of the ASS and finally lead to a constructive interference pattern. USV Symbol Macro(s) Description USV Symbol Macro(s) USV Symbol MDaecsrcor(ips)tion Description Nanomaterials2017,7,405 0392 Β \textBeta GREEKCA6PIoTAfL2L1ETTERBETA 039N2anomatΒerials 201\7t, e7x, t4B0e5t a 0393 Γ \te0x3t9G2amma Β \GtReExEKtCBAePtITaALLETTERBETA GREEKC6A PoITfA 2L2L ETTERGAMMAGREEKCAPITALLETTERBETA 0393 Γ \textGamma 0394 Δ \te0x3t9D3elta Γ \GtReExEKtCGAaPmITmAaLLETTERGAMMA GREEKCAPITALLETTERDELTA GREEKCAPITALLETTERGAMMA 0394 Δ \textDelta 0395 Ε \te0x3t9E4psilonΔ \GtReExEKtCDAePlITtAaLLETTERDELTA GREEKCAPITALLETTEREPSILONGREEKCAPITALLETTERDELTA 0395 Ε \textEpsilon 0396 Ζ \te0x3t9Z5eta Ε \GtReExEKtCEApPsITiAlLoLEnTTEREPSILON GREEKCAPITALLETTERZETA GREEKCAPITALLETTEREPSILON 0396 Ζ \textZeta 0397 Η \te0x3t9E6ta Ζ \GtReExEKtCZAePtITaALLETTERZETA GREEKCAPITALLETTERETA GREEKCAPITALLETTERZETA 0397 Η \textEta 0398 Θ \te0x3t9T7heta Η \GtReExEKtCEAtPaITALLETTERETA GREEKCAPITALLETTERTHETA GREEKCAPITALLETTERETA 0398 Θ \textTheta 0399 Ι \te0x3t9I8ota Θ \GtReExEKtCTAhPeITtAaLLETTERTHETA GREEKCAPITALLETTERIOTA GREEKCAPITALLETTERTHETA 0399 Ι \textIota 039A Κ \te0x3t9K9appa Ι \GtReExEKtCIAoPtITaALLETTERIOTA GREEKCAPITALLETTERKAPPA GREEKCAPITALLETTERIOTA 039A Κ \textKappa 039B Λ \te0x3t9LAambda Κ \GtReExEKtCKAaPpITpAaLLETTERKAPPA GREEKCAPITALLETTERLAMDAGREEKCAPITALLETTERKAPPA 039B Λ \textLambda 039C Μ \te0x3t9MBu Λ \GtReExEKtCLAaPmITbAdLaLETTERLAMDA GREEKCAPITALLETTERMU GREEKCAPITALLETTERLAMDA 039C Μ \textMu 039D Ν \te0x3t9NCu Μ \GtReExEKtCMAuPITALLETTERMU GREEKCAPITALLETTERNU GREEKCAPITALLETTERMU 039D Ν \textNu 039E Ξ \te0x3t9XDi Ν \GtReExEKtCNAuPITALLETTERNU GREEKCAPITALLETTERXI GREEKCAPITALLETTERNU 039E Ξ \textXi 039F Ο \te0x3t9OEmicronΞ \GtReExEKtCXAiPITALLETTERXI GREEKCAPITALLETTEROMICRONGREEKCAPITALLETTERXI 039F Ο \textOmicron 03A0 Π \te0x3t9PFi Ο \GtReExEKtCOAmPiITcArLoLEnTTEROMICRON GREEKCAPITALLETTERPI GREEKCAPITALLETTEROMICRON 03A0 Π \textPi 03A1 Ρ \te0x3tAR0ho Π \GtReExEKtCPAiPITALLETTERPI GREEKCAPITALLETTERRHO GREEKCAPITALLETTERPI 03A1 FFiigΡguurree 55.. \(ta(ea)x )tSSRcchhhoeemmaatitci0 cd3dAia3iaggraramm Σoof fleleftf-th-\hatane0nxd3tdAeS1edid gmmmauultlΡitpiplele-t-utur\nrGtn RepExEplKtalCRasAhsmPomIToAoLnLniEciT cTlEeRlenRnHsO;s ;(b(b) )RRCCPP lilgighhtG tRaEaEtKt aCaA PITALLETTERSIGMA GREEKCAPITALLETTERRHO 03A3 wwaΣavveelleenngg\tthht eooxftf S66i66g00mn anmmil l0iu3llmAu4minianteasteaΤsl oanlognthg\ ettenh0xee3tgA Tn3aateuigvaetziv-Σceo ozr-cdoino\arGdttReeiEnxE(Kcta)CStAeisP cgIT(hmAcaeL)mL EsTacTthEiRecSmIdGMiaaAtgicr admiaogfrtahme roeGflR aEttEhiKveCeA PITALLETTERTAU GREEKCAPITALLETTERSIGMA 03A4 rpehlΤaatsiveeo fps\hutaersfxeat cToeafup slausrmfaoc0en3 Awp5laavsemsoenΥx cwiteadvebs\y teet0xhx3cetAiU4tspepsdiir labolyns Τltihteu nsdpei\rrGtaRRelE xECsKtlPCTiAtaiP ulIuTlAunLmdLEeiTnTrE aRRtTiACoUnP. TillhuemdiinffaetrieonntG. RcTEoEhKloeCrA PITALLETTERUPSILONGREEKCAPITALLETTERTAU 03A5 dairfΥrfoerwenstr ec\potrleoexsrte Uanprtsrotihlweosnd rief0fp3erAree6snetnpth tahΦsee sd’iifnfecr\reetnme0tx3 etpAnP5hthaiosfetsh’ eiΥneclreecmtriec\nGtfitRe EeoxElKtfd CUtAEphPszIeTi.A leLRolLeeEnTcpTtrErRoicUdP uSfIiLceOelNdd wEzi.t hRepperromdGiusREscEieKodCnA PITALLETTERPHI GREEKCAPITALLETTERUPSILON 03A6 wfriΦothm p[e4r4m]\.itCsesoxioptnPyh rfiirgohmt S[4p04r3i]n.A C7georp,y20ri1Χg1h.t Spri\ntge0ex3rtA,C 62h0i11. Φ \GtReExEKtCPAhPiITALLETTERPHI GREEKCAPITALLETTERCHI GREEKCAPITALLETTERPHI 03A7 Χ \textChi 03A8 Ψ \te0x3tAP7si Χ \GtReExEKtCCAhPiITALLETTERCHI GREEKCAPITALLETTERPSI GREEKCAPITALLETTERCHI 03A83.3. HThyΨebr iFdDSTp\iDtrea xlstPiPmlsaiusmlaotnioic0n3L Aer9nessultsΩ for su\tceh0x3 tAmO8muegltaipΨle-turn \GtAReExSEKtSCP AsPdiITeALmLEoTTnERsPtSrIate its advanGtRaEgEKeCsA PITfAoLrL ETTEROMEGAGREEKCAPITALLETTERPSI 03A9 Ω \textOmega 03AA Ϊ \te0x3tAI9otadieΩresis \GtReExEKtCOAmPeITgAaLLETTEROMEGA GREEKCAPITALLETTERIOTAWITGHRDEIEAKLYCATIPKITAALLETTEROMEGA 03AgAenerTathΪieng Aa Sh\Stiegxhtm Iqoeutnaatdliiiotenyr,ee sdziesroa-boorvdeer ceavnan\"eo{s0\nc3teAleyAnxtt IBcooetsuas}Ϊpelle betah\mGetRe ExaEKtrnCIadAodPt ITiraAaedLlliLlaEeyTtrT-ieEpvRseoIiO slThaArWigiITzhHeD dIfAoLYcTucIKoAsimngp odneepntth ooff GREEKCAPITALLETTERIOTAWITHDIALYTIKA tchierc ufolcaurlsy -sppoo\lta" r{ui\znteeddxetrIin oRtcaiCd}Pe03n AiclBeluimntionΫaStPioPnw. \Wa"v{he\itsle.ex OtuUnpnsdtihelero nb}thaes e\L"oC{f\Ptth exientsIcioindtage}lnec-etu, ran dAaSrSk, acehnytebGrRr EiEwdKCisAlplPI TiAbrLaeLl ETTERUPSILONWITHDIALYTIKA 03AoBpbltaasimneΫodn,i calse n\e"s{x\hptaeescxttbeUedpes. nilTof0hun3}urAtCsh, ersupcrάho pmosueld\ti'pf{0o\l3ertA-eBetxuntrahnlap nhAΫac}iSnSg twh\eiG"lRl{cE \EoKtbuCeeAxp PtIlTUqiAnpLusLgiEitTleTeoE fRnfiUu}PcsSiIeLeOfnNucWlyI THi[Dn4IA 5LY,d4TIeK6At]e(GcaRtEsiEnKsgShM AoLtwLhLeEnT TERALPHAWITGHRTEOEKNOCSAPITALLETTERUPSILONWITHDIALYTIKA 03ApColarizάation c\h'a{r\atecxtetarsl pohaf }0th3AeD incideέnt CPL\'. {0N\3tAeeCvxteerpthsielάloens}s, a \fG'aR{Ec\EtKt SesMxhAtoLaLulLEplTdhTaE R}bAeLP HnAoWtITeHdTO NthOSat theG RiEnEtKeSMnAsLiLtLyET TEREPSILONWGITRHEETKONSMOSALLLETTERALPHAWITHTONOS in Figure 6). It combines a single-turn ASS with a single-turn arranged triangular aperture array, 03AwDill reaέch the\ 'm{\atexxitmepusmil o0wn3}AhEen theή turns \a'{r0\e3t AeiDnxtcerteaa}sέed to \bG'eR{E \EfKtiSevMxeAtL eLopLwEsTiTilEnRogEnP} SItLoON WthITHeT OlNiOmS itatiGoRnEE KoSMf ALtLhLeET TERETAWITHTGORNEOEKSSMALLLETTEREPSILONWITHTONOS 03ApEcroouppalgiήnagtinbgo tlh\e'nt{hg\ettherx atodeft itaah}lea 0nS3dPAFPth weaavzieίm. Suuthcha\l 'a{p0 \3omtAleEauxrtlitiziopattlaei}ήo-tnucrno mA\Gp'SR{EoS\EnKt cSeeMaxnAtnLteL stLfEaioTn}fTEdCR EpPTAoLWt.IeTTHnThtOiNeaOlSe xappeprliimcaGeRtEinEoKtnaSMslA aLfLnoLErdT TERIOTAWITHGTROENEOKSSMALLLETTERETAWITHTONOS 03AFnumerίicalres\u'{l\tstevxetriioftya}th03eBe0xpectaΰtionso\"f{0t\3htAeeFxdtuepssigilnίonvaecruyte\wG}'R{Ee\ElKtlSe.MxAAtLiLsoLEtsTahT}EoRwIOTAnWiITnHTFONigOSure6a,GtRhEEeKSsMpALiLrLaETlTERUPSILONWGITRHEEDKIASLMYATLIKLALEATNTDERTOIONTOASWITHTONOS 03Bf0aorcruasningΰegm beeanmt\o"sf{, \3int2etxeistnouspsisctiyel laoe0ncs3atBtuc1ruaitatein}nggu,α lCarPLap pe\ortltea0ux3rrtBieaz0slaptehitoacnh eΰadnainlytosi\saG",R{ E1a\E5nKt0SedMx-A ntsLuLmopL EsoTgiTnlEoR.o lUndPaScIfiLuOlNtmeW}ITcHaDInALYcToIKuAApNlDGeRTEObENKoOSStMhALtLhLEeTTERALPHA GREEKSMALLLETTERUPSILONWITHDIALYTIKAANDTONOS 03B1radialαandth\eteaxztiamlpuhtahalp03oBl2arizatiβoncom\tpe0ox3tnBb1eenttasofαCPL[\4Gt7ReE]xE.KtWSaMlAphLhLeaLnETTtEhRAeLPaHAzimuthalcomGpREoEKnSMeAnLLtLiEsTTERBETA GREEKSMALLLETTERALPHA 03B32i.n3c. iHdeynbβtritdo Sthpi\ertaterlx iPtabnlaegstumaloanriac0p L3eBer3ntus res’γarray,c\otne0xs3ttBrg2urgcatimvmeaβfocusin\GgtReEcxEaKtnSbMeAbtLaeLLaETcThERiBeEvTAedowingtothGeREiEnK-SpMAhLLaLsEeTTERGAMMA GREEKSMALLLETTERBETA 03B3surfaTcheγep laAsmS\Sot nexsmtagetrngtahtmieomnatwed0o3 Be4qaubaolvseiδ decsaann d\toae0nxd3ltBjyad3 ecletcnaotuappγleer tutrhe\e.Gt RWeExEKrthaSgeMdrAngiLaaLtmLlhElmTyeaT-ErpRaGodAlMiaaMrAlizcoedm pocnomenptoGisRnEiEenKnScMti AdLLeoLnEfTt T ERDELTA GREEKSMALLLETTERGAMMA 03Bc4tiorctuhlearδtlryi-apnoglu\atrleaizxretdadep lietnractiudree0n3acBre6r ainyt,od SeζPstPru wcta\ivvteee0x3stfB. oz4Oectunas itnhgeδ bwaislel b\oGtefRe ExEtaKthcSdehMe AilsLetLivanLEegTdTlEeR-oDtEwuLTrAinn gAtSoS,t hae hoyubtGr-RioEdEfK -sSpMpAhiLraLaLsEleT TERZETA GREEKSMALLLETTERDELTA 03B6 ζ \textzeta 03B7 η \te0x3tBe6ta ζ \GtReExEKtSzMeAtLaLLETTERZETA GREEKSMALLLETTERETA GREEKSMALLLETTERZETA 03Bp7sluarsfmacoeηnpicl alesnm\sto ehnxatsse atbtaetehne futw0r3toBh8eerq puraolθpsoidseeds a\fonter0dx 3etBant7dhhejaatnacceinnηtga tpheer tc\uGotReruEexEpKt.SelMiStnAauLgLc LheETfTfaEiRclEieTeAfnt-chya [n4d5e,4d6]s p(aisr aGsRlhEEtoKrwSiMaAnnL LgiLnlEeT TERTHETA GREEKSMALLLETTERETA 03BF8leignusrcea θn6).f oIctu \cstoetmhxtebtihRneCetasP aa ns0di3nBLg9lCeP-tuinrnιc idAeSnSc\ etwei0nxi3ttBthgo8 raido itsfafienrθgelne-ttpuar\ntGttR eeEaxErKrtnrStMsahAenoLtLgfaLeEtTdhTE eRtTreHilEaeTAnctgruiclafir ealdpedritsuGtrRrEeiEb KuaSMrtAirLoaLnyLEs,T .TERIOTA GREEKSMALLLETTERTHETA 03Bc9Tohueplmineιga sbuorteh\d ttheinxett gerranidsoiittaayl adn0is3dtB rAtihbeu taizoiκnmsubtyhaN\l tSpe0Oxo3tBlMka9arpifzpoaartitohιne cloefmt-\phGtRoaeExnEnKtedSgMnreAitdLsoL tLsoEapTfT iECrRaIPOlTLAt.r iTahneg leexlpeenrsimuGenRnEdEtKeaSrlM ARaLnLCLdEPT TERKAPPA GREEKSMALLLETTERIOTA 03BnAaunmdeLrCiκcPal irlleus\umtletixnst avktaeiporpinfays athr0ee3 BseBhxopwecntaλitnionFisg ou\ftr eet0hx37teBlaA ad,bmeb,sdriagensκp veecrtiyv \ewGtlRyeeEx.ElKlt.BSk MAaeApLsspLi aLdsEhTeTosER,wKtAhnPPe Ains pFiirgaulraer r6aan, gGtRheEemEK sSeMpnAiLtrLaLoElTf TERLAMDA GREEKSMALLLETTERKAPPA 03BaBtrrriaannggeuλmlaernatr o\ratf ey3x2t( lsiaysmombsdmcaeelet0sr3y tBrCbiarnokguenlμa)rd aopeesr\ttnue0oxr3tetBmsBnu eetecdhethλde incteon ta\rGt Ra1eEl5xEKt0aSl-lManiAgmLmbLndL mEagTToeERlndLtA MfoiDlfAmth ceanp lcaosumpolenG RibEcEoKltSehMnA LtsLhLteEoT TERMU GREEKSMALLLETTERLAMDA 03BrCtahdeiasli naμgnudl atrhiet\y taepzxotimminuuttohfaill lpuomlairniaztaitoinone ictohmer\,ptweo0x3nhtBemiCncughtrsce oeakfn μCoPvLer c[4o\G7tmRe]E.xEe KtWSmtMhuAheLeLdnLEi TfTtfiEhRceMu Ualtzyimofuuthsainl gcothmepsocnaennnti nisg GREEKSMALLLETTERMU \textmugreek 03BD ν \textnu \textmugreek GREEKSMALLLETTERNU 03BiDmnceicdheanνnt istom tfho\etr eixtmrtinaaugnignugl.ar0 3aBpEertureξs’ arra\yt,e 0xc3tBoxDnistrucνtive fo\cGtuReEsxEiKtnSnMguA LLcLaEnTT ERbNeU achieved owinGRgEE KtSoM ALtLhLeET T ERXI GREEKSMALLLETTERNU 03BiEn-phTashξee dsuisrtf\aatncecexe txpbileatswmeoenn0s3t BhFaet spthireοa lttwrioa n\egtqeu0xu3ltaBaoErlm aiscpirdeorentξsu raenadr r\aGtaRyedExEjKataSxncMideALnLttLh ETeaTEpsRpXeIrirtaulres.l itWishseent atshGR0eE.E 7Kr5SMaAλdLsLipaLEplT ,TEROMICRONGREEKSMALLLETTERXI 03BcFroemsupltoinοnegnitn isa \itpnehcxitadosemeincdtr itofofne trh0e3enC ct0reiaonfg3uπl/a2r .aTph\etreet0uxr3tarBpedFi iaarlraaynο,d daezsitmr\uGutcRetEtxEhiKvtaSoeMlm AifpLocLorcLlEouaTnTsrEiiRnzOagMIt CiwRoONinll cboem apcohnieevnGeRtdEsE KooSfwMACiLnLPLgELT TERPI GREEKSMALLLETTEROMICRON 03Ct0hoa sthae πo/u2t-pohf\-atpsehexatdpsieif fesurernfac0ce3e.C 1pTlhaesrmeρfoonrse ,aat\n tet0ohx3vteCre0 hrtoawllo 2πeqpuhaal s\esGtiReddExEeiKtfsSpfM eiAarLenLnLdEcT TeEaRdmPIjaacyenbte aopbetaritnueredG.R EbESeKutSMwcAhLeL eLaEnT TERRHO GREEKSMALLLETTERPI 03Cl1SefPtP-hwanρadveeds esxp\ctireitaxelt drthraoiatnthgeles 0lp3eCinr2as lctarnia ςnfogcuulsa rt\hateep0 x3eRtCrgC1truPsri egamnaadrρr aLyCaPn \idGntRecEtxEhiKtdeSreMhsnAopLcLieLrE aTiTnlERtsoRlHi tOd,ilfefaedreinngt ptoatctoerGnnRsEsEtK rouSMfcA tLtLihvLeEeT TERFINALSIGMGAREEKSMALLLETTERRHO 03Ce2ilnetcetrrfiecς rfeienlcde da\\itttseettxxrhttiebgvraucsrteisinogimgtneamsar. 0wT3hCit3eh mtheeasσhuirgehde isn\\ttttfieee0xxne3ttlCsdvs2iaityrgesm ndiahgismataςnricbeumtieo\\nGntttRees.ExxE bKttTSgvyhMra AusrNLisLsSgiL,EmgOTtamThaEMReF IcNfoAoLrmS ItGbhMAien laetfito-hnaonfdGtRehEdEeK sSsMppAiLirLraLaElTl TERSIGMA GREEKSMALLLETTERFINALSIGMA 03Ct3srliiatnwglietσh lesnpsi rua\ntlledyxe-tars riRrgamCnaPg eadn0d3tCr 4LiaCnPg uilllτaurmapinear\tttiuoe0xrn3etCst3 aaarurrea yshsσohwown nin\iGt nRFeExiEFgKtiSsugMirAugeLmLr ae7LEaT6T,EbbR,S cIrGaeMnAspfoecctuivseRlyC. PBleiGsgRiEhdEKteSsiMn,A LttLohLeEaT TERTAU GREEKSMALLLETTERSIGMA 03Cs4mpiorrael atτirgrhantlgye\fmtoecexuntsttea oudf stprioatn0a3gCnu5dladr eafrorυcauys (tshy\emtLe0mx3CtCeuP4tprslyiig lbhorntoτiknetno)a d\dGotReoeExEnsKt uStnMatoA-uLstL hLnEaTepTeERedTdA Utdhies tcreibnutrtaiol nalwigGinRtEmhEKeaSMndAtL aLoLrEfkT TERUPSILON GREEKSMALLLETTERTAU 03Ct5cheen ptelra.υsTmhoensiuc\ ptleeexnrtisou ptrositi itlehoseno sf0int3hCg6euclaormitbyφi npaotiinotn\ otlefi0 ex3itlCilgn5urmpthhiienhaυtiigohne reipt\hoGtRweeExrEKet, SurwMpcAshLoiLinlLcEovhTnTe EcrRasUinPoS ILnoOvNeeffirccoiemnecy thaen GddREitEfhKfiSeMcAufiLlLetLlyEdT TERPHI GREEKSMALLLETTERUPSILON 03Co6efn uhsainncφge tmheen stc\catoenxmntigpnragprh emidewch0ita3hCn7itshme ffoorχrm imeralyg-i\dnteeg0sx3. itCgc 6nhiedpuφreASS\GtpReElxEaKtsSgMmrApLohLinLEiTcTElRePHnIs. ThefieldenhGaREnEKcSeMmALLeLnETtTERCHI GREEKSMALLLETTERPHI 03C7atthefχocusin\gteaxntdchtihepowerconversioneffi0c3iCe7ncyofχthecirc\GutRelEaxEKtrScMphAioLLlaLErTiTzERaCtHioI nanalyzerareincreased GREEKSMALLLETTERCHI by39.53%and94.69%bynumericalstudies,respectively. Intermsofthehybridplasmoniclens,azeroth-order(second-order)evan1e8scentBesselvortex beam will be obtained under RCP (LCP) incide1n8t illumination with higher coupling efficien1c8y. Forbothcircularly-polarizedilluminations,donut-shapedpatternswithadarkcenterareobtainedin Nanomaterials2017,7,405 7of21 experimentalresultsowingtothelowcouplingefficiencyofthelongitudinalfield,whilethedetected peaksignalinthefocusregionforRCPincidenceisobviouslyhigherthanthatwithLCPincidence.One ofthemethodstoimprovethecouplingefficiencyofthelongitudinalfieldistousetheworn-outNSOM fiberprobewitha200-nmaperture. Therefore,adetectorwithdiameterofdplacedinthefocusregion candetectthesignalsfordistinguishingtheRCPandLCPwell. Additionally,thecircularly-polarized extinctionratiobetterthan16canbeattainedwithadiameteroftheapertureas0.3λ,whichshowsthat iNtacnaonmabteeriaalsh 2i0g1h7,- 7e,f 4fi0c5i e ncyminiaturecircularpolarizationanalyzer. Besides,anarrayofthesehy7b orf i2d2 Nplaansommaotenriiacls l2e0n1s7,e 7s, c40a5n bealsousedinparallelnear-fieldandpolarimetricimaging. 7 of 22 Figure 6. Scanning electron microscope(SEM) image of a plasmonic lens th at consists of a Figure 6. Scanning electron microscope(SEM) image of a plasmonic lens that consists of a Fspigiruarlely -6a.r rSacnagnendi ntgri aenlgecutlraorn s umbi-carpoesrctoupree (SaErrMay) eimtcahgeed oinf toa ap lgaoslmd ofnilimc l(ean) s anthda ta choynbsrisidts sopfi raal spirally-arrangedtriangularsub-aperturearrayetchedintoagoldfilm(a)andahybridspiralplasmonic spplairsamllyon-aircr laenngse cdo mtrbiainnignugl atrh es uabrr-aayp eorft utrriea nagruralayr eatpcehretudr eins two itah gsoinldg lef-itlmur n( aA) SaSn (db )a f ahbyribcraitde ds pwiritahl lenscombiningthearrayoftriangularapertureswithsingle-turnASS(b)fabricatedwithfocusedion pfolacsumseodn iioc nle bnesa cmo m(FbIiBn)i nmgi ltlhineg a. rRraeyp roofd turicaendg wuliathr appeerrmtuisrseiso nw fitrho msi n[4g6le].- tCuornp yAriSgSh (tb O) pfatibcrailc aStoecdie wtyi tohf beam(FIB)milling.Reproducedwithpermissionfrom[46].CopyrightOpticalSocietyofAmerica,2012. fAomcuesreidca i,o 2n0 b12e.a m (FIB) milling. Reproduced with permission from [46]. Copyright Optical Society of America, 2012. FFiigguurree 77.. MMeeaassuurreedd NNSSOOMM nneeaarr--fifieelldd iinntteennssiittyy ddiissttrriibbuuttiioonn iimmaaggeess ooff tthhee lleefftt--hhaannddeedd aarrrraannggeedd ssppiirraall Fttrriiigaaunnrggeuu 7llaa. rrM aapepaeesrrutturureredea NarrrSarOayyMu un ndnedearerr(-a f()iaeR)l dCR PiCnaPten nadnsi(dtby )( bdL)iCs LtPrCiibnPuc tiindiocenind ciemen.acRgee.e psRr oeofpd truhocede udlecfwet-diht hawnpidteher mdp aiesrrsrmiaoninsgsfeirodonm s pfr[i4or6ma]l. tC[r4io6ap]n.y gCruioglpahryt raOipgpehtrtit cuOarlpeSt ioacrcarilea Styyo ucoinfedAtyem ro e(fa rA)ic mRa,Ce2rP0ic 1aa2n,. d20 (1b2). LCP incidence. Reproduced with permission from [46]. Copyright Optical Society of America, 2012. 3.4. ATShSe wdiitshtaanCcoen bceentwtreiceAn nthnue lsapriGrarol otvrieangular aperture array and the spiral slit is set as 0.75 λspp, resulTTtihhneeg dcinois mtaa bnpichneaa sbtieeo tndwifeofefenrAe tnShcSee saopnfi dr3aπal /t2cr.io aTnnhcgeeun rltaarrdi ciaapal nearnntuudlr aear zaigrmrraouyot hvaaenl,d pa toshlaeshr siozpwairtniaol nisn lcitoF miisg pusoeretn ea8ns, t0sh. 7ao5sf λCalsPpspLo, rheassu alt iπn/g2 ipnh aa speh daisfefe dreifnfceere. nTchee roeff o3rπe/,2 a. nT hove erraadlli a2lπ a pndha aszei mdiufftehraeln pceo lmaraiyza btieo onb ctoaminpedo nbeentwts eoefn C SPPLP been proposed and investigated in theory for realizing the selection for CPL in the far-field [48]. hwaasv ae sπ /e2x cpihteadse adt iftfheer esnpcier.a Tl htreiraenfogruel,a ar na poveretruarlle 2aπr rpahya saen dd iftfheer esnpcier aml asyli tb, el eoabdtianinge tdo bceotwnseterunc StiPvPe TheimprovedperformancecomparedwiththepureASScomesfromthefactthattheexistenceof winatevrefse reexncciete adt atht et hcee nstperir awl itthri atnhge uhlaigrh aepste rftiuelrde eanrhraayn caenmde ntht.e Tshpuirsa, lt hseli tc, olmeabdiinnagt ioton coof ntshter uscptiirvael thecircularannulargroovecanscattertheSPPsatthegrooveintothepropagatingwaveandthen isnlitte rwfeitrhe nscpei raatl ltyh-ea rcreanntgeerd w tritihan tghuel ahri gahpeesrtt ufireel da rernayh asnhcoewmne nint. FTihguusre, t6hbe ccaonm fboicnuast iRoCn Po fl itghhet sinptiora al converge the propagating waves into the far-field. The scattered light by the annular groove can smliot rwe ittihg hsptliyr aflolycu-asrerda nsgpeodt atrniadn dgeufloacru asp tehretu LreC Par lriagyh ts hinotwo na idno Fniugtu-sreh a6pbe cda nd ifsotrciubsu tRioCnP wliigthht ai ndtaor ak interfereconstructivelyordestructivelyinthefar-field,whichmakeitavailableandconvenientfor mceonrtee rt.i gThhtely s ufopceursieodri tsipeso to af nthde d ceofmocbuisn athtieo nL CliPe liing htht ei nhtoig ha edro pnouwt-eshr acpoendv edrissitornib ueftfiiocnie nwciyth a an dd atrhke practicalapplicationsinthefar-field,wherethesignalcanbedetectedbyconventionalopticaldevices. cfieenldte re. nThhaen scuempeerniot rictoiems poafr ethde wcoimthb itnhaet ifoonr mliee rilny -tdhees ihgingehde rp puorwe eAr ScSo npvlearssmioonn eicf filceinens.c yT haen df itehlde SimulatedresultsindicatethatsuchasimplifiedstructurecanbealsousedtofocustheincidentCPL feinelhda necnehmaenncte mate ntth ec ofmocpuasriendg wanitdh tthhee pfoowrmere rlcyo-ndveesrigsinoend epffuicriee nAcyS So fp ltahsem ocinriccu llaern sp. oTlahreiz afiteioldn intothefar-fieldregioneffectively,iftherotationdirectionofpolarizationlightisoppositethechirality eannhaalynzceerm aerne ti nactr etahsee df obcyu 3si9n.5g3 %an adn dth 9e4 .6p9o%w ebry cnounmveerrisciaoln s teufdfiiceise,n rceys poefc ttihveel yc.i r cular polarization oftheASS.Additionally,thefullwidthathalfmaximum(FWHM)ofthefocalspotcanalwaysmaintain analyIzne rte arrme si nocfr ethaese hdy bbyr i3d9 p.5l3a%sm aonndi c9 4le.6n9s%, a b zye nroutmh-eorridcaelr s(tsuedcoiensd, r-oesrdpeerc)t ievvealyn.e s cent Bessel vortex beamIn w tielrl mbes oobf ttahien ehdy burnidd eprl aRsCmPo n(LicC lPe)n isn, cai dzeenrot tihll-uomrdinera t(isoenc ownidth-o hrdigehr)e re vcaonuepslcinengt e Bffeiscsieenl cvyo.r Fteoxr bbeoathm cwiriclul lbaer loyb-ptaoilnaeridz eudn dilelur mRCinPa t(iLonCsP, )d ionnciudte-snht aiplleudm pinaattteiornn sw witihth h aig hdearr kc ocuenptlienrg a ereff iocbietnaicnye. dF oinr beoxpthe rciimrceunltaarll yr-epsoullatrsi zoewd iinllgu mtoi ntahteio nlosw, d oconuupt-lsihnagp eefdf icpiaetntecyrn so fw tihthe alo dnagriktu cdeinntaelr faiereld o, bwtahinileed t hine edxepteecrtiemde npteaalk rseisgunlatsl ionw thineg f otcou st hree glioown fcoor uRpCliPn gin ecfidfiecniecnec yis oobf vtihoeu slloyn hgiigtuhdeirn tahl afni etlhda, t wwhitihle LtChPe dinectiedcetendc ep. eOanke s iogfn tahle i nm tehthe ofdosc utso rimegpiornov feo rt hReC cPo uinpcliindgen ecfefi cisie onbcvyi oouf sthlye hloignhgeitru tdhianna lt hfiaetl dw iist hto L uCsPe itnhcei dweonrcne-. oOunt eN oSfO thMe fmibeetrh opdros bteo wimitphr oav 2e0 t0h-ne mco uappelirntugr eef. fTichieenrecyfo oref , tah ed leotnecgtiotur dwinitahl dfiiealmd eist etro oufs de tphlea cwedo rnin-o utht eN fSoOcuMs friebgeiro pnr ocbaen wdiethte cat 2t0h0e-n smig anpaelsr tuforre . dTihsetirnegfouriesh, ian dg ettehcet oRr CwPi tha nddia mLCetPe r wofe ldl. pAldacdeidti oinna ltlyh,e t hfeo ccuirsc urleagriloyn-p ocalanr izdeedte ecxt titnhcet iosnig rnaatliso bfoertt edr itshtianng u16is hcainng b et haett aRinCePd wanitdh aL CdPia mweetlelr. Aofd tdhieti oanpaelrltyu,r teh aes c 0ir.c3uλl,a wrlhyi-cpho lsahroizweds tehxatitn ict tcioann rbaet iao hbiegthte-re ftfhicaine n1c6y c mani nbiea tautrtaei ncierdcu wlairth p ao ldairaizmaetitoenr of the aperture as 0.3λ, which shows that it can be a high-efficiency miniature circular polarization Nanomaterials 2017, 7, 405 8 of 22 analyzer. Besides, an array of these hybrid plasmonic lenses can be also used in parallel near-field and polarimetric imaging. 3.4. ASS with a Concentric Annular Groove The combination of ASS and a concentric annular groove, as shown in Figure 8, has also been proposed and investigated in theory for realizing the selection for CPL in the far-field [48]. The improved performance compared with the pure ASS comes from the fact that the existence of the circular annular groove can scatter the SPPs at the groove into the propagating wave and then converge the propagating waves into the far-field. The scattered light by the annular groove can interfere constructively or destructively in the far-field, which make it available and convenient for practical applications in the far-field, where the signal can be detected by conventional optical Ndaenvoimcaetser. iaSlsim20u17l,a7t,e4d0 5results indicate that such a simplified structure can be also used to focu8s otfh2e1 incident CPL into the far-field region effectively, if the rotation direction of polarization light is opposite the chirality of the ASS. Additionally, the full width at half maximum (FWHM) of the focal lessthanthehalfwavelengthofincidentlight,whichcanovercometheshortcomingofthenear-field spot can always maintain less than the half wavelength of incident light, which can overcome the characteristicsoftheintensitydistribution. shortcoming of the near-field characteristics of the intensity distribution. Figure 8. Schematic diagram of the designed structure under the illumination of the RCP plane wave Figure8.SchematicdiagramofthedesignedstructureundertheilluminationoftheRCPplanewave along the positive z-direction. Reproduced with permission from [48]. Copyright Springer, 2011. alongthepositivez-direction.Reproducedwithpermissionfrom[48].CopyrightSpringer,2011. The schematic diagram (Figure 8) shows a left-handed ASS milled into a 300-nm silver film Theschematicdiagram(Figure8)showsaleft-handedASSmilledintoa300-nmsilverfilmwith with a concentric annular groove as a plasmonic lens, and the corresponding parameters are also aconcentricannulargrooveasaplasmoniclens,andthecorrespondingparametersarealsoindicated. indicated. The circularly-polarized plane wave illuminates along the positive z-direction with Thecircularly-polarizedplanewaveilluminatesalongthepositivez-directionwithwavelengthof660nm, wavelength of 660 nm, and the ASS width w1 and the groove depth h are set as 100 and 50 nm, andtheASSwidthw andthegroovedepthharesetas100and50nm,respectively.WhentheRCPlight respectively. When t1he RCP light is incident on the plasmonic lens structure, SPP waves excited by isincidentontheplasmoniclensstructure,SPPwavesexcitedbytheASSwillpropagatealongthemetal the ASS will propagate along the metal surface, and then, they are scattered by the concentric surface,andthen,theyarescatteredbytheconcentricannulargrooveintopropagatingwavesintofree annular groove into propagating waves into free space. Eventually, the scattered propagating space.Eventually,thescatteredpropagatingwavesfromtheannulargroovewillinterfereconstructively waves from the annular groove will interfere constructively because of the same phase on the becauseofthesamephaseonthez-axis. z-axis. Figure 9 shows the simulated |E|2 distribution in the x-z-plane for the left-handed spiral Figure 9 shows the simulated |E|2 distribution in the x-z-plane for the left-handed spiral plasmonic lens shown in Figure 8 with concentric annular groove radius r = 0.90 µm under RCP plasmonic lens shown in Figure 8 with concentric annular groove radius r22 = 0.90 μm under RCP and LCP incidence, respectively. Such a left-handed combined structure focuses RCP light into a and LCP incidence, respectively. Such a left-handed combined structure focuses RCP light into a centralspotefficiently,asshowninFigure9a. Owingtotheexistingscatteringphasefunctionofthe central spot efficiently, as shown in Figure 9a. Owing to the existing scattering phase function of the scatteredlightcausedbytheconcentricannulargroove,theintensityalongthepropagationdirection scattered light caused by the concentric annular groove, the intensity along the propagation isenhancedgradually(thereisanobviousdifferenceinintensitypointbypoint)intothefar-field. direction is enhanced gradually (there is an obvious difference in intensity point by point) into the TheFWHMofthefocusiscalculatedtobe0.44λ smallerthanthehalfwavelengthofincidentlight far-field. The FWHM of the focus is calculated 0to be 0.44 λ0 smaller than the half wavelength of (λ );whilesuchastructurefocusesLCPincidentlightintoaringwithadarkcenterspotasshownin inc0ident light (λ0); while such a structure focuses LCP incident light into a ring with a dark center Fspigout raes9 Nsbahn,oodmwuatneer itailons 2 tF0h1i7eg, 7ud, r4ee0s5 t 9r bu,c dtiuvee itnot tehrfee dreensctreuocftisvcea titnetreerdfelriegnhcteo offt hsecaStPtePrewda lvigehint othf ethfea rS-9fiP ofeP 2l 2dw .ave in the far-field. Figure F9i.guTreh 9e. Tsihme usilmatueladte|d E||E|22 ddiissttrribibuutitoinosn isn itnhe txh-ez-pxl-azn-ep floarn tehef olerft-thhaendle sfpt-irhaal npdlassmpoinraicl lpenlas smonic lens unudnedrerR RCCPP iinnccididenecnec (ea) (aan)da LnCdP LinCciPdenincec i(dbe).n Rceepr(obd)u.cedR ewpitrho pdeurmceidssiowni tfrhomp e[4r8m]. iCssoipoynrigfhrot m [48]. CopyrigShptriSnpgerri,n 2g0e1r1,. 2011. The focus effect of similar combined structures with five concentric annular grooves R = 0.58, 0.90, 1.22, 1.54 and 1.86 μm are also investigated. Simulated results reveal that the focus depth can be modulated by adjusting the number and radius of concentric annular grooves. The demonstrated potentials make this structure have great applications in the areas of optical detection, imaging, and so on. This plasmonic lens provides new trains of thought for later studies on combing a multiple-turn spiral slit with several grooves, which can improve the coupling efficiency and elongate the focal depth effectively. 3.5. ASS Combined with Coaxial Archimedes’ Spiral Gratings A combined plasmonic structure by ASS with coaxial Archimedes’ spiral gratings (ASG) on both sides of the gold film (Figure 10) has also been proposed and investigated in theory by our group, which is designed based on the same spin-dependent polarization-sensitive and spin-dependent focusing effect of the ASS [28]. The designed structure is sensitive to incident polarization of CPL, and it can realize the focusing and defocusing effects under the illumination of different CPL effectively owing to the existence of ASG. Figure 10. Schematic diagram of the proposed structure under the illumination of the circular polarization plane wave along the positive z-direction (from glass side); (a) a single-turn left-hand spiral slit surrounded by Archimedes’ spiral gold grating on both sides of the metal film; (b) lateral view of the structure along the location of the line depicted in (a). The red arrows represent the propagation of SPPs. The incident light is coupled into SPPs through the spiral slit, and the SPPs generated from the corresponding slits at each side have the opposite direction of propagation. The Nanomaterials 2017, 7, 405 9 of 22 Figure 9. The simulated |E|2 distributions in the x-z-plane for the left-hand spiral plasmonic lens under RCP incidence (a) and LCP incidence (b). Reproduced with permission from [48]. Copyright NanomSatperriianlsg2e0r1, 72,071,14.0 5 9of21 The focus effect of similar combined structures with five concentric annular grooves R = 0.58, 0.90,T 1h.e22f,o c1u.5s4e affnedct 1o.f86si mμmila rarceo malbsoin iendvsetsrtuigctautereds. wSiimthufliavteedco rnecseunlttrsi creavnenaul ltahragtr tohoev efoscRus= d0e.5p8t,h0 .c9a0n, 1b.2e2 ,1m.5o4daunldat1e.d86 µbmy aaredajulssotiinngv estthigea tendu.mSibmeru laatendd rersaudltisurse veoafl thcoatntcheenftoriccu sadnenputhlacra ngbreomovoedsu. laTtehde bdyeamdojunssttirnagtetdh epnoutemntbiearlsa mndakraed tihuiss ostfrcuocntucerne thriacvaen gnruelaatr agprpoolivcaesti.oTnhse ind etmheo anrsetarast oedf oppottiecnatli dalestemcatikoen, tihmisasgtirnugct,u arendha vsoe gorena. tTaphpisl icpaltaiosmnsoinnitch eleanrse apsroofvoipdteicsa lndeewte cttriaoinn,si moaf gtinhgo,uagnhdt sfooor nl.aTtehri ssptuladsmieso noicn lceonmspbrionvgi da emsnueltwiptlrea-tiunsrno fspthiroaulg shlitt fworitlha tseervseturadli egsrooonvceosm, wbihnigcha cmanu litmippler-otuvren thspei rcaoluspliltinwgi tehffsiecvieenracyl garnodo veelos,nwgahtiech thcea nfoicmapl rdoevpethth eeffceocutipvleinlyg. efficiencyandelongatethefocaldeptheffectively. 3.5. ASSCombinedwithCoaxialArchimedes’SpiralGratings 3.5. ASS Combined with Coaxial Archimedes’ Spiral Gratings AcombinedplasmonicstructurebyASSwithcoaxialArchimedes’spiralgratings(ASG)onboth A combined plasmonic structure by ASS with coaxial Archimedes’ spiral gratings (ASG) on sidesofthegoldfilm(Figure10)hasalsobeenproposedandinvestigatedintheorybyourgroup, both sides of the gold film (Figure 10) has also been proposed and investigated in theory by our which is designed based on the same spin-dependent polarization-sensitive and spin-dependent group, which is designed based on the same spin-dependent polarization-sensitive and focusingeffectoftheASS[28]. ThedesignedstructureissensitivetoincidentpolarizationofCPL, spin-dependent focusing effect of the ASS [28]. The designed structure is sensitive to incident anditcanrealizethefocusinganddefocusingeffectsundertheilluminationofdifferentCPLeffectively polarization of CPL, and it can realize the focusing and defocusing effects under the illumination of owingtotheexistenceofASG. different CPL effectively owing to the existence of ASG. Figure 10. Schematic diagram of the proposed structure under the illumination of the circular Figure 10. Schematic diagram of the proposed structure under the illumination of the circular polarization plane wave along the positive z-direction (from glass side); (a) a single-turn left-hand polarizationplanewavealongthepositivez-direction(fromglassside);(a)asingle-turnleft-handspiral spiral slit surrounded by Archimedes’ spiral gold grating on both sides of the metal film; (b) lateral slitsurroundedbyArchimedes’spiralgoldgratingonbothsidesofthemetalfilm;(b)lateralviewof view of the structure along the location of the line depicted in (a). The red arrows represent the thestructurealongthelocationofthelinedepictedin(a).Theredarrowsrepresentthepropagation propagation of SPPs. The incident light is coupled into SPPs through the spiral slit, and the SPPs of SPPs. The incident light is coupled into SPPs through the spiral slit, and the SPPs generated generated from the corresponding slits at each side have the opposite direction of propagation. The from the corresponding slits at each side have the opposite direction of propagation. The spiral gratingsreflectpartoftheSPPwaveduetoBraggreflection.Reproducedwithpermissionfrom[28]. CopyrightSpringer,2015. AcombinedplasmonicstructurebyASSwithcoaxialArchimedes’spiralgratings(ASG)onboth sidesofthegoldfilm(Figure10)hasalsobeenproposedandinvestigatedfully,whichisdesignedbased onthesamespin-dependentpolarization-sensitiveandspin-dependentfocusingeffectoftheASS[28]. ThedesignedstructureissensitivetoincidentpolarizationofCPL,anditcanrealizethefocusingand defocusingeffectsundertheilluminationofdifferentCPLeffectivelyowingtotheexistenceofASG. TheadditionalASGstructuremakesmoreincidentlightcoupledintoSPPsforenhancingthefield intensity[49]. TheincidentlightispropagatingfromtheglasssidetothemetalASSside. Byadding theArchimedes’spiralgratingsonthebottomofthemetal,thecouplingefficiencyofincidentlightto SPPscouldbeenhancedefficiently.Meanwhile,withthemethodofaddingASGonthetopofthemetal film,theexocentricSPPscanbediminished,anditcandecoupleintoscatteringlight;therefore,thefocus intensitywillbestronger. Nanomaterials 2017, 7, 405 10 of 22 spiral gratings reflect part of the SPP wave due to Bragg reflection. Reproduced with permission from [28]. Copyright Springer, 2015. A combined plasmonic structure by ASS with coaxial Archimedes’ spiral gratings (ASG) on both sides of the gold film (Figure 10) has also been proposed and investigated fully, which is designed based on the same spin-dependent polarization-sensitive and spin-dependent focusing effect of the ASS [28]. The designed structure is sensitive to incident polarization of CPL, and it can realize the focusing and defocusing effects under the illumination of different CPL effectively owing to the existence of ASG. The additional ASG structure makes more incident light coupled into SPPs for enhancing the field intensity [49]. The incident light is propagating from the glass side to the metal ASS side. By adding the Archimedes’ spiral gratings on the bottom of the metal, the coupling efficiency of Nanominacteirdiaelnst2 0li1g7h,7t ,t4o0 S5PPs could be enhanced efficiently. Meanwhile, with the method of adding ASG on1 0of21 the top of the metal film, the exocentric SPPs can be diminished, and it can decouple into scattering light; therefore, the focus intensity will be stronger. TheTshime suilmatuiloantiorne sruelstusltasr aeres hsohwownni nin FFiigguurree 1111.. BBotoht hthteh eeleecltercict rfiicelfdie ilndteinnstietyn sfiotry thfoer LtChPe aLnCdP and RCPRilCluPm illiunmatiinoanticoans ecassaerse airme ipmropvroevdedo bovbivoiuouslsylyc ocommppaarreedd ttoo tthhaatt ooff tthhee ssiinngglele AASSS,S w,whihchic his ibsebtteetrt erfor practfiocra pluratciltiitcya.l utility. FiguFriegu11re. 1|1E. ||E2|2d disisttrriibbuuttiioonn inin thteh ze-yz--pyl-apnlea fnoer tfhoer ltehfte-hlaenftd- hspainradl psplaisrmalonpilca lsemnso. nTiocpl ceonlsu.mTno (pa,bc)o: lumn (a,b)P:uPrue resinsignleg-lteu-rtnu rlneftl-ehfat-nhda nAdSSA; SbSo;tbtoomtt ocmolucmolnu m(cn,d)(:c ,lde)f:t-hleafnt-dh aAnSdS AsuSrSrosuunrdroedu nbdye dlebfty-hlaenfdt- hand ArchAimrcehdimeesd’essp’i rsaplirgalr agtriantging(A (ASGSG))o onnb bootthh ssiiddeess ooff tthhee mmeteatla flilfiml;m (a;,(ca) ,Lc)CLP CilPlumilliunmatiionna; t(ibo,nd;) (RbC,dP) RCP illumination. Reproduced with permission from [28]. Copyright Springer, 2015. illumination.Reproducedwithpermissionfrom[28].CopyrightSpringer,2015. 3.6. Combination of ASG and MIM Waveguide 3.6. CombinationofASGandMIMWaveguide The above reviewed structures only work at a specific wavelength and allow both RCP and The above reviewed structures only work at a specific wavelength and allow both RCP and LCP light transmit though the plasmonics lens. Therefore, if a structure can work in a relative LCPblriogahdtbatrnadn asnmdi tbltohcok uCgPhL twhiethp al agsivmeno nhiacnsdleednnse.ss,T thhee rpeefrofroer,miafnaces otrf upcotluarriezactiaonn wseloercktiviintya wrilell ative broabdeb baentdtera.n Ind 2b0l1o2c,k RC. HPoLllwinigtshwaorgtihv eetn ahl. apnrdopeodsneeds as ,htyhberipde srtfrourcmtuaren cceomofbipnoinlagr AizSaGti ownitshe alenc MtivIMity will bebewttaevre.gIunid2e0 1[520,]R a.sH shoollwinng isnw Foirgtuhree t12a.l .Inp rtohpeior siendveasthigyabtiroindss, ttrhuec sttururectcuorme cbainn iwnogrAk SvGeryw witehlla inn MIM wavevgisuibidlee a[5n0d] anseasrh-oinwfrnareind Friegguiorens1 2o.rI nlotnhgeeirr iwnvaevsetleignagttihosn. sB,oththe snturumcetruicrael casnimwuloartikonvse raynwd ellin experiments have been performed to demonstrate its admirable performance of circularly visibleandnear-infraredregionsorlongerwavelengths. Bothnumericalsimulationsandexperiments dichroism. haveNbaneoemnatepriealrsf 2o0r1m7, 7e, d405to demonstrateitsadmirableperformanceofcircularlydichroism. 11 of 22 Figure 12. The perspective and cross-section view of ASG with the MIM waveguide. The dimensions Figure12.Theperspectiveandcross-sectionviewofASGwiththeMIMwaveguide.Thedimensionsof of such a structure can be easily fabricated with state-of-the art photolithography systems. suchastructurecanbeeasilyfabricatedwithstate-of-theartphotolithographysystems.Reproducedwith Reproduced with permission from [50]. Copyright Optical Society of America, 2011. permissionfrom[50].CopyrightOpticalSocietyofAmerica,2011. The combined structure can be fabricated with the state-of-the-art photolithography systems, and only standard thin film of three lithography levels is required for the fabrication process. The gold film was deposited on the silicon dioxide (SiO2), and the center region of the metal spiral gratings was cut out to form a cavity with an aperture whose cross-section was a trapezoid MIM waveguide [51–53]. The dielectric layer of SiO2 uniformly covered the metal region, and a metal cap was used to cover the circular aperture as shown in Figure 12. The ASG is similar to longer wavelength antenna analogues [10], which can only transmit CPL with a specific chirality, but block CPL with the opposite chirality. Meanwhile, the metal cap can effectively obstruct the direct transmission of the incident light. Such a spiral configuration can concentrate the RCP light and then radiate the energy out of the circular aperture into the far-field region. However, for the LCP light, the field is concentrated into the plasmonic vortex, which embraces the metal cap, and finally, the energy will be absorbed owing to the ohmic losses. These facts indicate that the novel model is a kind of transmitting structure, and the polarization character of CPL incidence can be detected by measuring the far-field transmission. The superiority of this designed structure makes it easy to detect the signals by measuring the far-field transmission and to modulate the concrete operating wavelength. By varying the incident wavelength, the transmission for RCP incidence is still larger than that under LCP illumination in a relatively broad operating wavelength. This is why this structure can work in a controllable operating wavelength. Meanwhile, by modulating the parameters (spiral arm length), more incident energy can be coupled into the SPP mode, and the total transmission can be increased correspondingly under RCP incidence. The investigation on the influencing performances of the arm length (from 3π to 4.5π) are shown in Figure 13. The simulation results reveal that by increasing the arm lengths, the RCP transmission increases, while LCP transmission nearly remains constant for a relatively broad operating wavelength, which means circular polarization selectivity can be improved with increasing the arm lengths. The most representative parameter for evaluating the actual performance of the designed structures is the extinction ratios. The extinction ratios can reach their maximum when the arm length goes to 4.2π, and then, it will slightly reduce with the increased arm length because of the slightly increasing LCP transmission. The simulated results agree well with the measured far-field transmission, which demonstrates that such a configuration can be utilized individually as a miniature circular polarization analyzer with a controllable bandwidth.

Description:
Abstract: Here, we have reviewed some typical plasmonic structures based spiral plasmonic nanostructures are promising for applications in analyzing circular polarization full Stokes-vectors of the polarization information. in Figure 1, and its geometry can be described in a simple algebraic for
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.