This article was downloaded by: On: 24 January 2010 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK Combustion Theory and Modelling Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713665226 Collective effects and dynamics of non-adiabatic flame balls Yves D'Angelo a; Guy Joulin a a Laboratoire de Combustion et de Détonique, Futuroscope, Poitiers, France Online publication date: 21 December 2000 To cite this Article D'Angelo, Yves and Joulin, Guy(2001) 'Collective effects and dynamics of non-adiabatic flame balls', Combustion Theory and Modelling, 5: 1, 1 — 20 To link to this Article: DOI: 10.1088/1364-7830/5/1/301 URL: http://dx.doi.org/10.1088/1364-7830/5/1/301 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. INSTITUTEOFPHYSICSPUBLISHING COMBUSTIONTHEORYANDMODELLING Combust.TheoryModelling5(2001)1–20 www.iop.org/Journals/ct PII:S1364-7830(01)14932-6 Collective effects and dynamics of non-adiabatic flame balls YvesD’Angelo1andGuyJoulin LaboratoiredeCombustionetdeDe´tonique,UPR9028CNRS,ENSMA,BP109,86960 Futuroscope,Poitiers,France E-mail:[email protected] Received23June2000,infinalform1November2000 Abstract The dynamics of a homogeneous, polydisperse collection of non-adiabatic flame balls (FBs) is investigated by analytical/numerical means. A strongly temperature-dependentArrheniusreactionrateisassumed,alongwithalight enough reactant characterized by a markedly less than unity Lewis number (Le). Combining activation-energy asymptotics with a mean-field type of 0 1 0 treatment,theanalysisyieldsanonlinearintegro-differentialevolutionequation 2 ry (EE) for the FB population. The EE accounts for heat losses inside each FB a nu and unsteadiness around it, as well as for its interactions with the entire FB a J population, namely mutual heating and faster (Le < 1) consumption of the 4 2 3 reactant pool. The initial FB number density and size distribution enter the 4 5: EE explicitly. The latter is studied analytically at early times, then for small 0 : totalFBnumberdensities;itissubsequentlysolvednumerically,yieldingthe t A d wholepopulationevolutionanditslifetime. Generalizationsandopenquestions e ad relatingto‘spotty’turbulentcombustionarefinallyevoked. o l n w o D Nomenclature A Heat-lossintensity,equations(1)and(4) c Specificheatatconstantpressure,equation(1) D Reactantdiffusivity,equation(2) D Thermaldiffusivity,equation(5) th D1/2(·) Fractionalderivativeoforder 21,equation(23) hi(ρ) ithterminearlyexpansionofR,equation(39) L Laplacetransform,equation(A2) Le Lewisnumber,equation(5) n(r ) InitialdistributionofFBsizes,equations(11)and(12) 0 N(ρ) NormalizedinitialdistributionofFBsizes,equation(21) 1 Authortowhomcorrespondenceshouldbeaddressed. 1364-7830/01/010001+20$30.00 ©2001IOPPublishingLtd PrintedintheUK 1 2 YD’AngeloandGJoulin n InitialFBnumberdensity 0 p Variableconjugatetoτ inLaplacetransforms,equation(27) Q Heatofreaction,equation(1) r DistancetocentreofasampleFB,equation(1) rF Flameballcurrentradius,equation(8) r Initialflameballradius,equations(11)and(12) 0 rZ RadiusofZel’dovich’sFB,equation(6) r R = F Scaledflameballradius,equation(9) r 0 R∗ RatthemaximumoflogR−αR2,equation(9) s Variableconjugatetot inLaplacetransforms,equation(A2) ST Collectiveheat-source,equation(1) Sy Collectivereactant-sink,equation(2) t Time,equation(1) T Temperature,equation(1) T Activationtemperature,equation(3) ac T∗ Referencereactiontemperature,equation(5) Tu Initialtemperatureinthebulkofmixture,equation(5) t Collisiontime,equation(3) coll 0 w Chemicalsourceterm,equation(1) 1 20 y Reactantmassfraction,equation(2) y uar yu Initialreactantmassfraction,equation(5) n Ja Ze(cid:5)1 Zel’dovichnumber,seeaboveequation(6) 4 2 3 4 : Greekandothersymbols 5 0 t: α Scaledheat-losscoefficient,equation(9) A ed θ(ρ) Time-scaleofFBextinctionforρ (cid:6)1,equation(B3) d a lo λ Heatconductivity,equation(1) n w Do ν Measureofcollectiveeffects,equation(22) ρ =r0/rZ ScaledinitialFBsize,equation(20) ρu =constant Mixturedensity,equation(1) σ Dummytimevariable,equation(23) τ Scaledtime,equation(20) τ τ atendofquasi-steadyphase,equation(36) end τ IntegralFBpopulationlifetime,equation(37) life 1. Introduction Adiabatic flame balls (FBs, for short), first invented theoretically by Zel’dovich (1944), constitute exact convection-free solutions to the reaction/conduction/diffusion balances. However, an adiabatic FB is unstable (Zel’dovich et al 1985, Deshaies and Joulin 1984), apropertypreviouslyexploitedinignitionmodels(Joulin1985). The experimental discovery (Ronney et al 1998 and references therein) that stable FB-looking combustion objects exist when lean mixtures of light fuels (e.g. H ) burn in 2 Collectiveeffectsanddynamicsofnon-adiabaticflameballs 3 microgravity conditions, has motivated the search for stabilizing mechanisms. The matter is not quite settled quantitatively, yet theoretical investigations have identified plausible candidates: radiantheatlossesfrominsidetheFB(Buckmasteretal1990)and/orfromaround it(Buckmasteretal1991);conductivelossestowalls(JoulinandBuckmaster1993);overall convectivelossescausedbysteadyvelocitygradientsintheneighbouringfluid(Buckmaster andJoulin1991). A more recent analysis (Joulin et al 2000) gives converging arguments that fluctuating velocitygradientswithzerotimeaverageactsimilarlytoglobalheatlossesoftime-dependent intensityandnon-zerotimeaverage;also,thattheycanmaintainthethrobbingFBradiusrF(t) aroundafinitevaluethatexceedsthevaluerZ foundbyZel’dovich. Astheanalysisdoesnot restricttherangeofchemicaltimesinvolved,itpointstothepossibilityofa‘spotty’regime ofturbulentcombustionoflean(andpossiblypreheated)mixturesofmobilefuels: manyFBs would then be competing for the common fuel and mutually heating one another, while the localvelocitygradientswouldextractheatfromeachindividualFBatafluctuatingratewhile thespotisadvectedbyturbulence. Analysingthiskindofconfigurationisaverydifficultmatter; yetoneknowsforsurea step that ought to be understood theoretically: how to tackle the collective effects among a populationofevolvingnon-adiabaticFBsofvarioussizes? Thisiswhatthepresentpaperaims todealwith. Forsimplicity,thenon-adiabaticityofeachFBismodelledherebyaconstant, commonrate,asifthelosseswerelocalones,e.g.radiant. The paper is organized as follows. Section 2 recalls the governing equations for a single quasi-steady FB embedded in a slowly varying atmosphere. Far-field unsteadiness 0 1 and a mean-field account of collective effects, resulting in an evolution equation for the 0 2 y whole FB population are also analysed. In section 3, the system dynamics is studied r ua analytically for some limiting cases. Sections 4 and 5 deal with the numerical procedure n a J and solutions of the integro-differential evolution equation for different levels of number 4 2 density of flame balls. We end up with concluding remarks and remaining open problems 3 :4 (section6). 5 0 : t A d e d 2. Mean-fieldanalysis a o l n w o D 2.1. Outlineofthemethod We consider a reactive gaseous premixture of initial ambient temperature Tu, density ρu and light-fuel mass fraction yu, through which combustion spots idealized as Zel’dovich- type FBs of various sizes rF(0) are randomly distributed at time t = 0. Our goal is to determinethebehaviourofthesystemfort > 0. BecauseFBsareknowntospontaneously evolveonamuchlongertimethantZ ≡ rZ2/Dth (whereDth isthethermaldiffusivity)when the reactant is mobile enough and the Zel’dovich number (Ze) is large, each of them will vary quasi-steadily if the concentration and temperature fields around it also change only slowly. In turn, because the latter drift under the collective effects, the FB number density has tobesmall,forconsistency. Specifically,theanalysisassumesaninitialnumberdensitythat correspondsroughlytooneFBofradiuscomparabletorZ inanyvolumeofO(Ze3rZ3)size, up to numerical factors; the typical spacing between neighbouring FBs is then O(ZerZ), i.e. comparable to the range of unsteady effects around each of them. At such a scale, each FB looks point-like. A rigorous treatment of the problem would require one to cope with all the direct interactions among the FB population to determine each individual 4 YD’AngeloandGJoulin Figure1. SampleflameballofradiusrF(t),surroundedbymanyothersthatmayhavedifferent sizes,e.g.initially(two-dimensionalsketch). behaviour. Foranalyticalconvenience,weshallpresentlyinvokeanapproximatemean-field treatment, like in studies of spray combustion (Williams 1985) or of charge screening in plasmas (Diu et al 1989). Focusing on a sample FB (cf figure 1), the influence of the others is modelled as that of a homogeneous continuous medium characterized by mean 0 quantitiesonly: numberdensity,‘granulometry’;consistently,theconsideredtestFBmaybe 1 20 consideredspherical. Suchacontinuous-mediumapproximationisbelievednottointroduce y r importantbiases: eachFBbehavesinitiallyasifalone,whereasnon-trivialcollectiveeffects a u an can be felt only late enough that information about the precise FB locations is already J 4 lost. 2 3 Thus, the chosen procedure consists in three steps: (a) the local analysis of a spherical 4 : 05 sample FB embedded in a provisionally unknown, slowly evolving environment; (b) a t: determination of the latter’s evolution; (c) acknowledging that the selected test FB is A ed totally anonymous, to obtain a two-variable (t and rF(0)) evolution equation for the whole d oa population. To further simplify the matter, all fluid-mechanical effects caused by density l wn changesaretobeomitted(seeJoulin(1985)forajustification),aswillbethedensitychanges o D themselves. 2.2. LocalstructureofasampleFB Let r denote the distance from the centre of a sample FB (figure 1), whose current radius (tobebetterdefinedlateron)isrF(t)attimet (cid:1) 0. Asexplainedabove,thepresentmodel considersthemixturedensityρuasaconstant,neglectsconvection,andassumeslocalspherical symmetry. ThelocalprofilesoftemperatureT andreactantmassfractiony willfollowthecoupled balances: (cid:1) (cid:2) ∂T 1 ∂ ∂T ρuc ∂t =λr2∂r r2 ∂r +Qw−A(r,t)+ST(r,t) (1) (cid:1) (cid:2) ∂y 1 ∂ ∂y ρu∂t =ρuDr2∂r r2∂r −w+Sy(r,t) (2) Collectiveeffectsanddynamicsofnon-adiabaticflameballs 5 where,uponthefurtherassumptionofaone-stepArrheniusburningprocess,therateofreactant consumptionreadsas e−Tac/T w =ρuy t . (3) coll The constant positive parameters c, λ, Q, D, T , t represent the mixture specific heat ac coll andthermalconductivity,thespecificheatofreaction,thereactantmoleculardiffusivity,the activationtemperatureandatypicalcollisiontime,respectively. ST(r,t)denotesmixtureheatingby‘theother’FBsinthepresentmean-fieldmodelling, whereasSy(r,t)<0accountsfortheirdepletingthereactantpool. A(r,t)isalocalheat-loss term,chosenheretohavetheform(Buckmasteretal1990): (cid:3) A>0 constantfor r (cid:2)rF(t) A(r,t)= (4) 0 otherwise. Forasteady(∂/∂t ≡0)adiabatic(A=0)isolated(ST =0=Sy)FB,equations(1)–(3)admit thefirstintegralλT +QρuDy ≡constant;areferencereactiontemperatureT∗,corresponding toy =0,maybedefinedas Qy T∗ =Tu+ cLeu (5) where Tu and yu are the values of T and y far from the FB (r (cid:5) rF) and Le = Dth/D 010 (Dth =λ/ρuc)istheLewisnumberofthereactant. ry 2 InthelimitZe≡Tac(T∗−Tu)/T∗2 −→∞ofalargeZel’dovichnumberthatweconsider ua from now on, the chemical activity is known (Joulin 1985) to be confined in a thin layer of n Ja O(rF/Ze) width about a special value rF(t), called the flame ball radius, of r, and may be 24 neglected outside. If A = 0, ST = 0 = Sy and Ze −→ ∞, rF (then noted rZ) is given by 3 :4 Zel’dovich’s(1944)analysis,namely: 5 0 (cid:1) (cid:2) ed At: 2rZ2 =DtcolleTac/TR Tac(LTe∗T−2Tu) 2 TR =T∗. (6) ad R o wnl Still for steady isolated FBs, accounting for A (cid:10)= 0 and allowing the values of (T,y) o D at r (cid:5) rF (yet (cid:6) ZerF) to be shifted from (Tu,yu) to (Tu +δT∞,yu +δy∞), changes the reaction temperature TR (≡ T(rF,t)) from T∗ to T∗ + δTR, with (Buckmaster and Joulin 1991) δT δT T −T δy Ar2 R (cid:11) ∞ + ∗ u ∞ − F (7) T∗ T∗ T∗ yu 3λT∗ whentheright-handsideof(7)isO(Ze−1)atmost. Theflameballradiuschangesaccordingly, fromrZ torF (cid:10)=rZ,with (cid:1) (cid:2) (cid:1) (cid:2) r 2 T δT F =exp − ac R (8) r T T Z ∗ ∗ asaconsequenceof(6). Forexample,R ≡rF/rZ isgivenby T Ar2 logR−αR2 =0 α ≡ ac Z (9) T∗ 6λT∗ whenδT∞/T∗ =0=δy∞/yu,anequationtobecommentedlater. 6 YD’AngeloandGJoulin Interestinglyenough,equations(7)and(8)stillholdwheneverδT∞ andδy∞,andhence rF/rZ,evolveslowlyenough,andifST,Sy maybeneglectedin(1)and(2)forr =O(rF). In particular,thisisthecaseforspontaneousevolutionsofasingleFB(ST =0=Sy)whenthe reactantLewisnumberismarkedlylessthanone(0 < 1−Le = O(1)),forsuchevolutions takeplaceoverthet =O(Ze2r2/D )time-scale(Joulin1985);the∂/∂t termsin(1)and(2) F th maythenbesafetyneglectedwhenanalysingthelocalFBstructure(r =O(rF)). Accordingly, onemaystillemploy(7)and(8)todescribethelocalstructureofasampleFBwhencollective effectsexist(ST (cid:10)= 0,Sy (cid:10)= 0),providedthatST andSy areatmostcomparable(uniformly) to ρuc∂T/∂t and ρu∂y/∂t, respectively. This is the case if the FB number density is small enough,O(Ze−3r−3)orless. Z Forfuturereferenceonemaynotethat,forrF (cid:6) r (cid:6) ZerF,thetemperatureandmass- fractionprofilesassociatedwiththequasi-steadysampleFBweselectedaregivenby (cid:1) (cid:2) r T T −Tu =(T∗−Tu) rF +δT∞+o Ze∗ (cid:4) (cid:5) (10) r y y−yu =−yu rF +δy∞+o Zue asistypicalofthree-dimensionalLaplacianfieldsawayfroman‘object’offinitesize((cid:11)rF). 2.3. Far-fieldandcollectiveeffects As indicated by (10), neglecting the transient effects and (ST,Sy) cannot be a uniformly 0 01 valid procedure, for example because the presumed dominant contributions ∂2/∂r2 and 2 y r−1∂/∂r to the Laplacians of T and y decay like 1/r3, whereas the small transient terms r nua decay like 1/r; also, ST and SL will not vanish at r (cid:5) rF. Accordingly, a far-field a 4 J analysis, corresponding to the range r = O(ZerZ) of unsteadiness (t = O(Ze2rF2/Dth)) 3 2 is needed. Before handling the latter problem proper, one must specify ST(r,t) and 5:4 Sy(r,t). 0 t: Let rF(t,r0) denote the current radius of a FB whose initial value at t = 0 is r0. As d A impliedby(10),thisFBactsaspointheatsource(ofstrength4πλ(T∗−Tu)rF(t,r0))andas oade asinkofreactant(ofstrength−4πρuDyurF(t,r0))whenseenfromadistancer (cid:5)rF(t,r0). wnl Ifn(r0)dr0 denotesthenumberperunitvolumeofFBswithinitialradiiin[r0,r0+dr0],the Do presentmean-field(i.econtinuous-medium)approximationstoST andSy read (cid:6) ∞ ST =4πλ(T∗−Tu) rF(t,r0)n(r0)dr0 (11) 0 (cid:6) ∞ Sy =−4πρuDyu rF(t,r0)n(r0)dr0 (12) 0 andarefunctionsoftimeonly,becausetheinitialdistributionofFBsinthemediumisassumed spatiallyhomogeneous. Accordingly, the O(T∗/Ze) profile of T(r,t)−Tu corresponding to the far-field scale r =O(ZerF)isgovernedbythePDE: (cid:1) (cid:2) ∂T 1 ∂ ∂T ρuc ∂t =λr2∂r r2 ∂r +ST(t). (13) Equation(13)isendowedwiththeboundaryconditions r (t,r ) T −Tu =(T∗−Tu) F r 0 +δT∞(t)+O(r) when r −→0 (14) Collectiveeffectsanddynamicsofnon-adiabaticflameballs 7 asisimpliedby(11)viamatchingarguments,and ∂T =0 at r =+∞. (15) ∂r Asfortheinitialcondition,wechose r T(r,0)−Tu =(T∗−Tu)r0. (16) Itisimportanttonotethatknowingthelimitofr(T −Tu)asr −→0andtheinitialprofile(16) isenoughtospecifythefarfieldT −Tu. Therefore,δT∞isexpressibleasalinearfunctionalof rF(t,r0)andST(t). AsshowninappendixA,timewiseLaplacetransformationfinallyyields2 (cid:6) (cid:6) (cid:6) TδT∞−(Tt) =4πDth tdt(cid:12) ∞rF(t(cid:12),r0)n(r0)dr0− t √r˙πF(Dt(cid:12),r(t0)−dtt(cid:12)(cid:12)). (17) ∗ u 0 0 0 th The first term on the right-hand side of (17) corresponds to the collective mixture heating by the whole FB population around the selected sample object; as expected, it is positive. The second one, negative if r˙F (cid:1) 0, accounts for unsteadiness of the selected sample FB: outwardly displacing a nearly isothermal surface (TR (cid:11) T∗) into cold gases induces an additive cooling at the surface’s exterior side, as the displacement brings about cold material. Thefar-fieldprofileofy(r,t)−yucanbeprocessedsimilarlytoproduce 0 (cid:6) (cid:6) (cid:6) ary 201 δy∞yu(t) =−4πD 0tdt(cid:12) 0∞rF(t(cid:12),r0)n(r0)dr0+ 0t √r˙Fπ(Dt(cid:12),(rt0−)dtt(cid:12)(cid:12)). (18) u n Ja Apartfromachangeofsign, thisisthesameas(17)onceD issubstitutedforD ; because th 3 24 D >Dth(i.e.Le<1)thecombinedinfluencesofδT∞andδy∞willnotvanishin(7),however. 4 : 5 0 t: 2.4. Evolutionequation A d de Once(17)and(18)arepluggedinto(7)and(8),anintegro-differentialevolutionequationis a nlo obtainedforrF(t,r0),namely w o (cid:1) (cid:2) (cid:7) (cid:6) D logrF −α rF 2 = Ze (D−1/2−D−1/2) t √r˙F(t(cid:12),r0)dt(cid:12) rZ rZ 2 th 0 πDth(t −t(cid:12)) (cid:6) (cid:6) (cid:8) t ∞ +(D−Dth)4π dt(cid:12) rF(t(cid:12),r0)n(r0)dr0 . (19) 0 0 Atthisstage,itisconvenienttointroducethescaledvariablesanddata τ = 4Dtht√ ρ = r0 R(τ,ρ)= rF (20) Ze2rZ2(1− Le)2 rZ rZ r n(r ) N(ρ)= (cid:9) Z 0 (21) ∞n(r )dr 0 0 0 √ (cid:6) π(1−Le)(1− Le)2 ∞ ν =(ZerZ)3 n(r0)dr0 (22) 2Le 0 2 r˙F denotes∂rF/∂t. 8 YD’AngeloandGJoulin Figure2. RepresentationofthefunctionlogR−αR2 forthreevaluesofα (cfequation(9)), ρ−>1andρ+>ρ−denotethetworootsofequation(9);R∗isthemaximumofthisfunctionfor α(cid:1)1/2e.(Valuesofρ−,ρ+andR∗areindicatedhereforα= 310.) 0 1 0 2 y r a u whichtransform(19)intothemorecompactform n a J 24 D1/2(R(τ,ρ))+νF(τ)=logR−αR2 (23) 3 (cid:6) (cid:6) :4 τ ∞ 05 F(τ)= dσ N(ξ)R(σ,ξ)dξ (24) : At 0 0 ded (cid:6) τ R˙(σ,ρ)dσ loa D1/2(R(τ,ρ))≡ √π(τ −σ) (25) wn 0 o D whereα isdefinedin(9)andR˙ nowdenotes∂R/∂τ. Equation(23)istobesolvedwiththe initialcondition R(0,ρ)=ρ. (26) (cid:9) FOBnenummaybenrodteicnesitthya(cid:9)t ∞0∞n(Nr()ρd)rd.ρW=h1e,na3nνd(cid:2)thaOt(ν1)=thOer(e1p)recsoernretasptiovnedesvotoluatinonOt(iZmee−3ofrF−th3e) 0 0 0 system is τ (cid:1) O(1), i.e. t (cid:1) O(Ze2r2/D ), as anticipated. This justifies a posteriori the F th quasi-steadyanalysisleadingto(6)and(7). √ Forν =0(isolatedFB),equation(23)admitstwofixedpointsρ− >1andρ+ (cid:1) e(cid:1)ρ−, thataretherootsof(9). Forthosetobereal,thescaledheat-losscoefficientα (equa√tion(9)) hastobelessthan1/2e;α (cid:6)1leadstoρ− −→1+andρ+ −→+∞,whereasρ− = e=ρ+ atα =1/2e(cffigure2). When non-zero, the νF-term acts in the same direction as αR2 and tends to make the ‘fixed’pointsshift: thecollectiveeffects(mutualheatingandreactantdepletion)haveanoverall coolinginfluence,becausethereactantdiffusesfasterthanheatdoes(Le<1). ThisνF-term 3 Actually,ν=1isalreadyaratherlargevalue(seesection5andfigure4). Collectiveeffectsanddynamicsofnon-adiabaticflameballs 9 is expected to make all the FBs ultimately shrink to zero size, since it cannot decrease as timeelapses; theonlywaytostopitsgrowthistohaveR(τ,ρ) = 0 forallρ, i.e.complete extinction. 3. Limitingcases Two analytical studies of equation (23) are summarized below: the limit of small ν, giving overalltrends;theearly-timehistoriesofR(τ,ρ),neededinthenumericaltreatmentspresented insection4. 3.1. Small-ν limit When ν is small, i.e. for ‘rarefied’ FB populations, the second, νF-term of (23) (collective effect)isnegligibleinitially; itwillbecomeimportantonlylater(forτν = O(1)), whenthe firsttermontheleft-handsideinturnbecomesnegligible. • τ =O(1). Neglecting the νF-term in equation (23) decouples the FB evolutions for a while. We recallthatwedenotebyρ+andρ− <ρ+thetworootsoflogρ−αρ2,α <1/2e. Eventhough onecannotsolve(23)exactlyforν = 0,differenttypesofFBfatesareexpected,depending on whether ρ is greater or smaller than ρ−. The case ρ < ρ− will lead to R(τ,ρ) = 0 shortly(seeappendixBforthecasewhereρ (cid:6) 1),whereasρ > ρ− willpresumably4 yield 0 201 R(τ,ρ)=ρ+attheendofthetimewiseboundarylayercorrespondingtoτ =O(1),ν −→0+. y Noexactproofisavailablethatsuchtrajectoriesexist,yetthefollowingmaybeputforward. r ua IfR(τ −→+∞,ρ)=ρ forsomeinitialρs,then an + J 24 pL(R(τ,ρ)−ρ)−→ρ+−ρ (27) 3 4 5: asthevariable(p)conjugatetotime(τ)intheLaplacetransformationL(·)goestozero(Luikov 0 : 1968). Usingthen(23),stillwithν =0,showsthat t A d ρ −ρ oade L(logR−αR2)−→ +√p as p −→0 (28) l n w Do wherebyRapproachesρ fromabove(respectively,below)ifρ >ρ (respectively,ρ <ρ ), + + + inthemanner (cid:1) (cid:2) (cid:1) (cid:2) 1 ρ −ρ 1 −2αρ (R−ρ )−→ √+ +o √ as τ −→+∞ (29) ρ + + πτ τ + because 2αρ2 > 1. Accordingly, no trajectory-crossing will take place during their (slow) + approachtoρ . Weshalltakeforgrantedthatν =0in(23)yields + R(τ,ρ <ρ−)−→0 R(τ,ρ >ρ−)−→ρ+ (30) as τ −→ +∞. The exceptional cases ρ (cid:11) ρ− have a negligible measure, generically. The conjecture (30) was tested upon looking at the auxiliary problem (a linearized form of (23) whenν =0andR (cid:11)ρ±) (cid:6) τ F˙(σ)dσ D1/2(F)≡ √π(τ −σ) =−mF (31) 0 4 Themethodsofsuper-solutionandsub-solutiondevelopedbyAudounetandRoquejoffre(2000)arelikelytosettle thepoint.