Reversible Markov Chains and Random Walks on Graphs David Aldous and James Allen Fill Unfinished monograph, 2002 (this is recompiled version, 2014) 2 Contents 1 Introduction (July 20, 1999) 13 1.1 Word problems . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.1.1 Random knight moves . . . . . . . . . . . . . . . . . . 13 1.1.2 The white screen problem . . . . . . . . . . . . . . . . 13 1.1.3 Universal traversal sequences . . . . . . . . . . . . . . 14 1.1.4 How long does it take to shuffle a deck of cards? . . . 15 1.1.5 Samplingfromhigh-dimensionaldistributions: Markov chain Monte Carlo . . . . . . . . . . . . . . . . . . . . 15 1.1.6 Approximate counting of self-avoiding walks . . . . . . 16 1.1.7 Simulating a uniform random spanning tree . . . . . . 17 1.1.8 Voter model on a finite graph . . . . . . . . . . . . . . 17 1.1.9 Are you related to your ancestors? . . . . . . . . . . . 17 1.2 So what’s in the book? . . . . . . . . . . . . . . . . . . . . . . 18 1.2.1 Conceptual themes . . . . . . . . . . . . . . . . . . . . 18 1.2.2 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . 19 1.2.3 Contents and alternate reading . . . . . . . . . . . . . 19 2 General Markov Chains (September 10, 1999) 23 2.1 Notation and reminders of fundamental results . . . . . . . . 23 2.1.1 Stationary distribution and asymptotics . . . . . . . . 24 2.1.2 Continuous-time chains . . . . . . . . . . . . . . . . . 25 2.2 Identities for mean hitting times and occupation times . . . . 27 2.2.1 Occupation measures and stopping times . . . . . . . 27 2.2.2 Mean hitting time and related formulas . . . . . . . . 29 2.2.3 Continuous-time versions . . . . . . . . . . . . . . . . 34 2.3 Variances of sums . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.4 Two metrics on distributions . . . . . . . . . . . . . . . . . . 36 2.4.1 Variation distance . . . . . . . . . . . . . . . . . . . . 36 2.4.2 L2 distance . . . . . . . . . . . . . . . . . . . . . . . . 39 3 4 CONTENTS 2.4.3 Exponential tails of hitting times . . . . . . . . . . . . 41 2.5 Distributional identities . . . . . . . . . . . . . . . . . . . . . 42 2.5.1 Stationarity consequences . . . . . . . . . . . . . . . . 42 2.5.2 A generating function identity . . . . . . . . . . . . . 43 2.5.3 Distributions and continuization . . . . . . . . . . . . 44 2.6 Matthews’ method for cover times . . . . . . . . . . . . . . . 45 2.7 New chains from old . . . . . . . . . . . . . . . . . . . . . . . 47 2.7.1 The chain watched only on A . . . . . . . . . . . . . . 47 2.7.2 The chain restricted to A . . . . . . . . . . . . . . . . 48 2.7.3 The collapsed chain . . . . . . . . . . . . . . . . . . . 48 2.8 Miscellaneous methods . . . . . . . . . . . . . . . . . . . . . . 49 2.8.1 Martingale methods . . . . . . . . . . . . . . . . . . . 49 2.8.2 A comparison argument . . . . . . . . . . . . . . . . . 51 2.8.3 Wald equations . . . . . . . . . . . . . . . . . . . . . . 52 2.9 Notes on Chapter 2. . . . . . . . . . . . . . . . . . . . . . . . 52 2.10 Move to other chapters . . . . . . . . . . . . . . . . . . . . . . 55 2.10.1 Attaining distributions at stopping times . . . . . . . 55 2.10.2 Differentiating stationary distributions . . . . . . . . . 55 3 Reversible Markov Chains (September 10, 2002) 57 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.1.1 Time-reversals and cat-and-mouse games . . . . . . . 59 3.1.2 Entrywise ordered transition matrices . . . . . . . . . 62 3.2 Reversible chains and weighted graphs . . . . . . . . . . . . . 63 3.2.1 The fluid model . . . . . . . . . . . . . . . . . . . . . . 66 3.3 Electrical networks . . . . . . . . . . . . . . . . . . . . . . . . 67 3.3.1 Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.3.2 The analogy . . . . . . . . . . . . . . . . . . . . . . . . 68 3.3.3 Mean commute times . . . . . . . . . . . . . . . . . . 70 3.3.4 Foster’s theorem . . . . . . . . . . . . . . . . . . . . . 71 3.4 The spectral representation . . . . . . . . . . . . . . . . . . . 72 3.4.1 Mean hitting times and reversible chains . . . . . . . . 75 3.5 Complete monotonicity . . . . . . . . . . . . . . . . . . . . . 77 3.5.1 Lower bounds on mean hitting times . . . . . . . . . . 79 3.5.2 Smoothness of convergence . . . . . . . . . . . . . . . 81 3.5.3 Inequalities for hitting time distributions on subsets . 83 3.5.4 Approximate exponentiality of hitting times . . . . . . 85 3.6 Extremal characterizations of eigenvalues . . . . . . . . . . . 87 3.6.1 The Dirichlet formalism . . . . . . . . . . . . . . . . . 87 3.6.2 Summary of extremal characterizations . . . . . . . . 89 CONTENTS 5 3.6.3 The extremal characterization of relaxation time . . . 89 3.6.4 Simple applications . . . . . . . . . . . . . . . . . . . . 91 3.6.5 Quasistationarity . . . . . . . . . . . . . . . . . . . . . 95 3.7 Extremal characterizations and mean hitting times . . . . . . 98 3.7.1 Thompson’s principle and leveling networks . . . . . . 100 3.7.2 Hitting times and Thompson’s principle . . . . . . . . 102 3.8 Notes on Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . 108 4 Hitting and Convergence Time, and Flow Rate, Parameters for Reversible Markov Chains (October 11, 1994) 113 4.1 The maximal mean commute time τ∗ . . . . . . . . . . . . . . 115 4.2 The average hitting time τ . . . . . . . . . . . . . . . . . . . 117 0 4.3 The variation threshold τ . . . . . . . . . . . . . . . . . . . . 119 1 4.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . 119 4.3.2 Proof of Theorem 6 . . . . . . . . . . . . . . . . . . . 123 4.3.3 τ in discrete time, and algorithmic issues . . . . . . . 126 1 4.3.4 τ and mean hitting times . . . . . . . . . . . . . . . . 128 1 4.3.5 τ and flows . . . . . . . . . . . . . . . . . . . . . . . . 130 1 4.4 The relaxation time τ . . . . . . . . . . . . . . . . . . . . . . 131 2 4.4.1 Correlations and variances for the stationary chain . . 134 4.4.2 Algorithmic issues . . . . . . . . . . . . . . . . . . . . 137 4.4.3 τ and distinguished paths . . . . . . . . . . . . . . . . 139 2 4.5 The flow parameter τ . . . . . . . . . . . . . . . . . . . . . . 142 c 4.5.1 Definition and easy inequalities . . . . . . . . . . . . . 142 4.5.2 Cheeger-type inequalities . . . . . . . . . . . . . . . . 145 4.5.3 τ and hitting times . . . . . . . . . . . . . . . . . . . 146 c 4.6 Induced and product chains . . . . . . . . . . . . . . . . . . . 148 4.6.1 Induced chains . . . . . . . . . . . . . . . . . . . . . . 148 4.6.2 Product chains . . . . . . . . . . . . . . . . . . . . . . 149 4.6.3 Efron-Stein inequalities . . . . . . . . . . . . . . . . . 152 4.6.4 Why these parameters? . . . . . . . . . . . . . . . . . 153 4.7 Notes on Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . 154 5 Examples: Special Graphs and Trees (April 23 1996) 159 5.1 One-dimensional chains . . . . . . . . . . . . . . . . . . . . . 160 5.1.1 Simple symmetric random walk on the integers . . . . 160 5.1.2 Weighted linear graphs. . . . . . . . . . . . . . . . . . 162 5.1.3 Useful examples of one-dimensional chains . . . . . . . 165 5.2 Special graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 168 5.2.1 Biased walk on a balanced tree . . . . . . . . . . . . . 195 6 CONTENTS 5.3 Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 5.3.1 Parameters for trees . . . . . . . . . . . . . . . . . . . 200 5.3.2 Extremal trees . . . . . . . . . . . . . . . . . . . . . . 203 5.4 Notes on Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . 205 6 Cover Times (October 31, 1994) 207 6.1 The spanning tree argument . . . . . . . . . . . . . . . . . . . 208 6.2 Simple examples of cover times . . . . . . . . . . . . . . . . . 212 6.3 More upper bounds . . . . . . . . . . . . . . . . . . . . . . . . 214 6.3.1 Simple upper bounds for mean hitting times. . . . . . 215 6.3.2 Known and conjectured upper bounds . . . . . . . . . 216 6.4 Short-time bounds . . . . . . . . . . . . . . . . . . . . . . . . 217 6.4.1 Covering by multiple walks . . . . . . . . . . . . . . . 219 6.4.2 Bounding point probabilities . . . . . . . . . . . . . . 221 6.4.3 A cat and mouse game . . . . . . . . . . . . . . . . . . 222 6.5 Hitting time bounds and connectivity . . . . . . . . . . . . . 223 6.5.1 Edge-connectivity . . . . . . . . . . . . . . . . . . . . 224 6.5.2 Equivalence of mean cover time parameters . . . . . . 226 6.6 Lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 6.6.1 Matthews’ method . . . . . . . . . . . . . . . . . . . . 227 6.6.2 Balanced trees . . . . . . . . . . . . . . . . . . . . . . 227 6.6.3 A resistance lower bound . . . . . . . . . . . . . . . . 228 6.6.4 General lower bounds . . . . . . . . . . . . . . . . . . 229 6.7 Distributional aspects . . . . . . . . . . . . . . . . . . . . . . 231 6.8 Algorithmic aspects . . . . . . . . . . . . . . . . . . . . . . . 232 6.8.1 Universal traversal sequences . . . . . . . . . . . . . . 232 6.8.2 Graph connectivity algorithms . . . . . . . . . . . . . 233 6.8.3 A computational question . . . . . . . . . . . . . . . . 233 6.9 Notes on Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . 233 7 Symmetric Graphs and Chains (January 31, 1994) 237 7.1 Symmetric reversible chains . . . . . . . . . . . . . . . . . . . 238 7.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . 238 7.1.2 This section goes into Chapter 3 . . . . . . . . . . . . 240 7.1.3 Elementary properties . . . . . . . . . . . . . . . . . . 240 7.1.4 Hitting times . . . . . . . . . . . . . . . . . . . . . . . 241 7.1.5 Cover times . . . . . . . . . . . . . . . . . . . . . . . . 242 7.1.6 Product chains . . . . . . . . . . . . . . . . . . . . . . 246 7.1.7 The cutoff phenomenon and the upper bound lemma . 248 7.1.8 Vertex-transitive graphs and Cayley graphs . . . . . . 249 CONTENTS 7 7.1.9 Comparison arguments for eigenvalues . . . . . . . . . 252 7.2 Arc-transitivity . . . . . . . . . . . . . . . . . . . . . . . . . . 254 7.2.1 Card-shuffling examples . . . . . . . . . . . . . . . . . 255 7.2.2 Cover times for the d-dimensional torus Zd. . . . . . . 257 N 7.2.3 Bounds for the parameters . . . . . . . . . . . . . . . 259 7.2.4 Group-theory set-up . . . . . . . . . . . . . . . . . . . 259 7.3 Distance-regular graphs . . . . . . . . . . . . . . . . . . . . . 259 7.3.1 Exact formulas . . . . . . . . . . . . . . . . . . . . . . 260 7.3.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 262 7.3.3 Monotonicity properties . . . . . . . . . . . . . . . . . 262 7.3.4 Extremal distance-regular graphs . . . . . . . . . . . . 263 7.3.5 Gelfand pairs and isotropic flights . . . . . . . . . . . 263 7.4 Notes on Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . 263 8 Advanced L2 Techniques for Bounding Mixing Times (May 19 1999) 267 8.1 The comparison method for eigenvalues . . . . . . . . . . . . 270 8.2 Improved bounds on L2 distance . . . . . . . . . . . . . . . . 278 8.2.1 Lq norms and operator norms . . . . . . . . . . . . . . 278 8.2.2 A more general bound on L2 distance . . . . . . . . . 280 8.2.3 Exact computation of N(s) . . . . . . . . . . . . . . . 284 8.3 Nash inequalities . . . . . . . . . . . . . . . . . . . . . . . . . 287 8.3.1 Nash inequalities and mixing times . . . . . . . . . . . 288 8.3.2 The comparison method for bounding N(·) . . . . . . 290 8.4 Logarithmic Sobolev inequalities . . . . . . . . . . . . . . . . 292 8.4.1 The log-Sobolev time τ . . . . . . . . . . . . . . . . . 292 l 8.4.2 τ , mixing times, and hypercontractivity . . . . . . . . 294 l 8.4.3 Exact computation of τ . . . . . . . . . . . . . . . . . 298 l 8.4.4 τ and product chains . . . . . . . . . . . . . . . . . . 302 l 8.4.5 The comparison method for bounding τ . . . . . . . . 304 l 8.5 Combining the techniques . . . . . . . . . . . . . . . . . . . . 306 8.6 Notes on Chapter 8 . . . . . . . . . . . . . . . . . . . . . . . . 307 9 A Second Look at General Markov Chains (April 21, 1995)309 9.1 Minimal constructions and mixing times . . . . . . . . . . . . 309 9.1.1 Strong stationary times . . . . . . . . . . . . . . . . . 311 9.1.2 Stopping times attaining a specified distribution . . . 312 9.1.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 314 9.2 Markov chains and spanning trees . . . . . . . . . . . . . . . 316 9.2.1 General Chains and Directed Weighted Graphs . . . . 316 8 CONTENTS 9.2.2 Electrical network theory . . . . . . . . . . . . . . . . 319 9.3 Self-verifying algorithms for sampling from a stationary dis- tribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 9.3.1 Exact sampling via the Markov chain tree theorem . . 322 9.3.2 Approximate sampling via coalescing paths . . . . . . 323 9.3.3 Exact sampling via backwards coupling . . . . . . . . 324 9.4 Making reversible chains from irreversible chains . . . . . . . 326 9.4.1 Mixing times . . . . . . . . . . . . . . . . . . . . . . . 326 9.4.2 Hitting times . . . . . . . . . . . . . . . . . . . . . . . 327 9.5 An example concerning eigenvalues and mixing times . . . . . 329 9.6 Miscellany . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 9.6.1 Mixing times for irreversible chains . . . . . . . . . . . 331 9.6.2 Balanced directed graphs . . . . . . . . . . . . . . . . 331 9.6.3 An absorption time problem. . . . . . . . . . . . . . . 332 9.7 Notes on Chapter 9 . . . . . . . . . . . . . . . . . . . . . . . . 332 10 Some Graph Theory and Randomized Algorithms (Septem- ber 1 1999) 335 10.1 Expanders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336 10.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . 336 10.1.2 Random walk on expanders . . . . . . . . . . . . . . . 337 10.1.3 Counter-example constructions . . . . . . . . . . . . . 338 10.2 Eigenvalues and graph theory . . . . . . . . . . . . . . . . . . 339 10.2.1 Diameter of a graph . . . . . . . . . . . . . . . . . . . 339 10.2.2 Paths avoiding congestion . . . . . . . . . . . . . . . . 340 10.3 Randomized algorithms . . . . . . . . . . . . . . . . . . . . . 342 10.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . 342 10.3.2 Overviewofrandomizedalgorithmsusingrandomwalks or Markov chains . . . . . . . . . . . . . . . . . . . . . 344 10.4 Miscellaneous graph algorithms . . . . . . . . . . . . . . . . . 344 10.4.1 Amplification of randomness . . . . . . . . . . . . . . 344 10.4.2 Using random walk to define an objective function . . 346 10.4.3 Embedding trees into the d-cube . . . . . . . . . . . . 347 10.4.4 Comparing on-line and off-line algorithms . . . . . . . 349 10.5 Approximate counting via Markov chains . . . . . . . . . . . 351 10.5.1 Volume of a convex set. . . . . . . . . . . . . . . . . . 353 10.5.2 Matchings in a graph . . . . . . . . . . . . . . . . . . 353 10.5.3 Simulating self-avoiding walks . . . . . . . . . . . . . . 354 10.6 Notes on Chapter 9 . . . . . . . . . . . . . . . . . . . . . . . . 355 10.7 Material belonging in other chapters . . . . . . . . . . . . . . 358 CONTENTS 9 10.7.1 Large deviation bounds . . . . . . . . . . . . . . . . . 358 10.7.2 The probabilistic method in combinatorics . . . . . . . 358 10.7.3 copied to Chapter 4 section 6.5 . . . . . . . . . . . . . 358 11 Markov Chain Monte Carlo (January 8 2001) 361 11.1 Overview of Applied MCMC . . . . . . . . . . . . . . . . . . 361 11.1.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 361 11.1.2 Further aspects of applied MCMC . . . . . . . . . . . 366 11.2 The two basic schemes . . . . . . . . . . . . . . . . . . . . . . 369 11.2.1 Metropolis schemes . . . . . . . . . . . . . . . . . . . . 369 11.2.2 Line-sampling schemes . . . . . . . . . . . . . . . . . . 370 11.3 Variants of basic MCMC . . . . . . . . . . . . . . . . . . . . . 371 11.3.1 Metropolized line sampling . . . . . . . . . . . . . . . 371 11.3.2 Multiple-try Metropolis . . . . . . . . . . . . . . . . . 372 11.3.3 Multilevel sampling . . . . . . . . . . . . . . . . . . . 373 11.3.4 Multiparticle MCMC. . . . . . . . . . . . . . . . . . . 375 11.4 A little theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 375 11.4.1 Comparison methods . . . . . . . . . . . . . . . . . . . 376 11.4.2 Metropolis with independent proposals . . . . . . . . . 377 11.5 Thediffusionheuristicforoptimalscalingofhighdimensional Metropolis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378 11.5.1 Optimal scaling for high-dimensional product distri- bution sampling . . . . . . . . . . . . . . . . . . . . . 378 11.5.2 The diffusion heuristic.. . . . . . . . . . . . . . . . . . 380 11.5.3 Sketch proof of Theorem . . . . . . . . . . . . . . . . . 381 11.6 Other theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 382 11.6.1 Sampling from log-concave densities . . . . . . . . . . 382 11.6.2 Combining MCMC with slow exact sampling . . . . . 383 11.7 Notes on Chapter MCMC . . . . . . . . . . . . . . . . . . . . 383 11.8 Belongs in other chapters . . . . . . . . . . . . . . . . . . . . 385 11.8.1 Pointwise ordered transition matrices . . . . . . . . . 385 12 Coupling Theory and Examples (October 11, 1999) 387 12.1 Using coupling to bound variation distance . . . . . . . . . . 387 12.1.1 The coupling inequality . . . . . . . . . . . . . . . . . 388 12.1.2 Comments on coupling methodology . . . . . . . . . . 388 12.1.3 Random walk on a dense regular graph . . . . . . . . 390 12.1.4 Continuous-time random walk on the d-cube . . . . . 391 12.1.5 The graph-coloring chain . . . . . . . . . . . . . . . . 392 12.1.6 Permutations and words . . . . . . . . . . . . . . . . . 393 10 CONTENTS 12.1.7 Card-shuffling by random transpositions . . . . . . . . 395 12.1.8 Reflection coupling on the n-cycle . . . . . . . . . . . 396 12.1.9 Card-shuffling by random adjacent transpositions . . . 397 12.1.10Independent sets . . . . . . . . . . . . . . . . . . . . . 398 12.1.11Two base chains for genetic algorithms . . . . . . . . . 400 12.1.12Path coupling . . . . . . . . . . . . . . . . . . . . . . . 402 12.1.13Extensions of a partial order . . . . . . . . . . . . . . 404 12.2 Notes on Chapter 4-3 . . . . . . . . . . . . . . . . . . . . . . 405 13 Continuous State, Infinite State and Random Environment (June 23, 2001) 409 13.1 Continuous state space . . . . . . . . . . . . . . . . . . . . . . 409 13.1.1 One-dimensional Brownian motion and variants . . . . 409 13.1.2 d-dimensional Brownian motion . . . . . . . . . . . . . 413 13.1.3 Brownian motion in a convex set . . . . . . . . . . . . 413 13.1.4 Discrete-time chains: an example on the simplex . . . 416 13.1.5 Compact groups . . . . . . . . . . . . . . . . . . . . . 419 13.1.6 Brownian motion on a fractal set . . . . . . . . . . . . 420 13.2 Infinite graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 421 13.2.1 Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . 422 13.2.2 Recurrence and Transience . . . . . . . . . . . . . . . 423 13.2.3 The finite analog of transience . . . . . . . . . . . . . 425 13.2.4 Random walk on Zd . . . . . . . . . . . . . . . . . . . 425 13.2.5 The torus Zd . . . . . . . . . . . . . . . . . . . . . . . 427 m 13.2.6 The infinite degree-r tree . . . . . . . . . . . . . . . . 431 13.2.7 Generating function arguments . . . . . . . . . . . . . 432 13.2.8 Comparison arguments. . . . . . . . . . . . . . . . . . 433 13.2.9 The hierarchical tree . . . . . . . . . . . . . . . . . . . 435 13.2.10Towards a classification theory for sequences of finite chains . . . . . . . . . . . . . . . . . . . . . . . . . . . 437 13.3 Random Walks in Random Environments . . . . . . . . . . . 441 13.3.1 Mixing times for some random regular graphs . . . . . 441 13.3.2 Randomizing infinite trees . . . . . . . . . . . . . . . . 444 13.3.3 Bias and speed . . . . . . . . . . . . . . . . . . . . . . 446 13.3.4 Finite random trees . . . . . . . . . . . . . . . . . . . 447 13.3.5 Randomly-weighted random graphs. . . . . . . . . . . 449 13.3.6 Random environments in d dimensions . . . . . . . . . 450 13.4 Notes on Chapter 13 . . . . . . . . . . . . . . . . . . . . . . . 451
Description: