Table Of ContentLogic, Argumentation & Reasoning 1
Carlo Cellucci
Rethinking Logic:
Logic in Relation
to Mathematics,
Evolution,
and Method
Logic, Argumentation & Reasoning
Interdisciplinary Perspectives from the Humanities
and Social Sciences
Volume 1
SeriesEditor
ShahidRahman
Forfurthervolumes:
http://www.springer.com/series/11547
Logic, Argumentation & Reasoning
TheSeriesisdevelopedinpartnershipwiththeMaisonEuropéennedesSciencesdel’Hommeetde
laSociété(MESHS)atNord-PasdeCalaisandtheUMR-STL:8163(CNRS).Aims&Scope:The
scientificobjectivesoftheseries,wherehumanitiesandsocialsciencesareconceivedasbuilding
interdisciplinaryinterfaces,are:
ThisseriespublishesvolumesthatlinkpracticesintheHumanitiesandSocialSciences,with
theories in Logic, Argumentation and Reasoning, such as: Decision theory and action theory,
Argumentation Theories in: cognitive sciences, economy, sociology, law, logic, philosophy of
sciences. The series isopen towards research from the Analyticand theContinental traditions,
andhasfourmainfocusareas:Pragmaticmodelsandstudiesthatdevelopadynamicapproachto
reasoning inwhichargumentation isstructured asaninteractionorasagame,inwhichtwoor
moreparticipantsplaymovesdefinedbythetypeofargumentationinquestion,communication,
languageandtechniquesofargumentation:studiesbetweenthepractical andtheoretical dimen-
sionsof argumentation, aswellas therelationships betweenargumentation and othermodes of
communication,reception,persuasionandpower:studiesinwhichreasoningpracticeisconsidered
from the point of view of its capacity to produce conviction of persuasion, and focusing on
understanding what makes an argument performative, Diachronic transformations of reasoning
practicesstudiesthatemphasizetheinventionandrenewalofreasoningforms,withrespecttoits
performanceanditseffectiveness.
GeneralEditor
ShahidRahman(Lille,UMR8163)
ManagingEditor
LaurentKeiff(Lille,UMR8163)
AreaEditors
ArgumentationandPragmatics CognitivesSciences.ComputerSciences
MarceloDascal(TelAviv) YannCoello(Lille)
ErikKrabbe(Groningen) EricGregoire(CRIL-Lens)
FransH.vanEemeren(Amsterdam) HenryPrakken(Utrecht)
JohnWoods(BritishColumbia/King’s FrançoisRecanati(ENS,Paris)
College)
EpistemologyandPhilosophyofScience
AndréFuhrmann(Frankfurt)
ArgumentationandRhetoric
GerhardHeinzmann(Nancy)
FabienneBlaise(Lille,MESHS-NordPas
GöranSundholm(Leyden)
deCalais)
GabrielGalvez-Behar(Lille,MESHS-Nord Logic
PasdeCalais) MichelCrubellier(Lille,UMR8163)
AndréLaks(Sorbonne,ParisIV) DovGabbay(King’sCollege)
RuthWebb(Lille,UMR8163) SvenOveHansson(Stockholm)
TeroTulenheimo(Lille,UMR8163)
DecisionTheory,Mathematics,Economy
PoliticalScienceandSociology
JacquesDubucs(IHPST-Paris1)
Jean-GabrielContamin(Lille)
FredéricJouneau(Lille)
FranckFischer(Rutgers)
RichardSobel(Lille)
JoshOber(Stanford)
MarcPichard(Lille,MESHS-NordPas
deCalais)
Carlo Cellucci
Rethinking Logic: Logic
in Relation to Mathematics,
Evolution, and Method
123
CarloCellucci
SapienzaUniversityofRome
Rome
Italy
ISBN978-94-007-6090-5 ISBN978-94-007-6091-2(eBook)
DOI10.1007/978-94-007-6091-2
SpringerDordrechtHeidelbergNewYorkLondon
LibraryofCongressControlNumber:2013935617
©SpringerScience+BusinessMediaDordrecht2013
Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof
thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,
broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation
storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology
nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.
PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations
areliabletoprosecutionundertherespectiveCopyrightLaw.
Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication
doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant
protectivelawsandregulationsandthereforefreeforgeneraluse.
While the advice and information in this book are believed to be true and accurate at the date of
publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor
anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with
respecttothematerialcontainedherein.
Printedonacid-freepaper
SpringerispartofSpringerScience+BusinessMedia(www.springer.com)
Preface
Despite strenuous efforts by its proponents, the contemporary form of logic,
mathematical logic, has generally failed to convince mathematicians, natural sci-
entistsandhumanscientistsofitsrelevancetotheirwork,increasinglysointhelast
fewdecades.Thiscontrastswiththereputationlogicenjoyedinantiquity,notonly
asoneofthemainpartsofphilosophy,butalsoasasupplierofinstrumentsforthe
sciences.
Thepurposeofthisbookistoexplainhowthepresentconditionoflogiccame
about and to propose an alternative to it. To this end, the book first gives an
overviewofhowlogicanditsrelationtothescientificmethodhavebeenconceived
in antiquity and in the modern age, because this provides indications for a new
approachtothesubject.Thenthebookproposesanewviewoflogicanditsrelation
to evolution, language, reason, method and knowledge, particularly mathematical
knowledge.Italsoproposesanewviewofphilosophyanditsrelationtoknowledge,
because seeing logic in a wider context helps to place it on a more satisfactory
basis. In terms of the proposed new view, logic is primarily a logic of discovery.
Accordingly,thebookdealswiththerulesofdiscovery.
I am grateful to several people for the help they gave me in many ways.
Somereadachapterandmaderemarks.Someraisedquestionsincorrespondence.
Some made comments on views expressed in this book, presented at seminars or
conferences. For their help in whatever form, I am especially indebted to Arthur
Bierman, Mirella Capozzi, Riccardo Chiaradonna, Cesare Cozzo, Philip J. Davis,
Michèle Friend, Donald Gillies, Norma Goethe, Emily Grosholz, Reuben Hersh,
JeffKochan,ColinMcGinn,DanielleMacbeth,JulienMurzi,DanNesher,Marwan
Rashed, Stephen Read, Andrea Reichenberger, Stephen P. Schwartz, Giovanna
Sillitti, Hourya Benis Sinaceur, Fabio Sterpetti, Philip Sullivan, Robert Thomas,
Mario Vassalle, Johan van Benthem, Jan von Plato. This does not mean that they
share the views expressed in this book or are in any way responsible for any
remaininginaccuracies.
Iamalsogratefultotwoanonymousrefereesfortheircomments,andtoArlette
Dupuisforreadingthemanuscriptandsuggestingseverallinguisticimprovements.
Moreover, I want to thank the Series Editor, Shahid Rahman, for supporting the
v
vi Preface
bookidea, forhelpingoutin manyways, andforselectingthe bookto inaugurate
theseriesLogic,Argumentation& Reasoning,andChristiLueatSpringerforher
assistanceinthepublicationprocess.
TheviewsexpressedinthebookareadevelopmentofthosepresentedinCellucci
1998,2003,2008a,2008b,2012.Chapter18isarevisedversionofCellucci2011.
IthankCambridgeScholarsPublishingfortheirkindpermissiontousethismaterial.
Awordaboutpronounsandgender.Constantuseof‘heorshe’maybeclumsy,
while constantuse of ‘she’ may give rise to misunderstandings.Therefore,I have
preferred to use the generic ‘he’ while stipulating here that I mean it to refer to
personsofbothgenders.
Contents
1 Introduction................................................................. 1
1.1 TheIntendedPurposeofMathematicalLogic..................... 1
1.2 TheBasicAssumptionsofMathematicalLogic................... 1
1.3 InadequacyoftheBasicAssumptionsofMathematicalLogic... 3
1.4 TheReceptionoftheLimitativeResults........................... 5
1.5 MathematicsandAxiomaticFormalTheories..................... 6
1.6 MathematicsandtheLossofCertainty............................ 7
1.7 TheTop-DownandBottom-UpApproachestoMathematics .... 10
1.8 TheTop-DownandBottom-UpApproachestoScience.......... 11
1.9 LimitationsoftheTop-DownApproach........................... 12
1.10 SeekingaNewRoleforMathematicalLogic ..................... 13
1.11 TheCriticismofScholasticLogic ................................. 14
1.12 ScholasticLogicandMathematicalLogic......................... 15
1.13 MathematicalLogicandDiscovery................................ 16
1.14 TheNeedforanAlternativeLogicParadigm ..................... 17
1.15 TowardsanAlternativeLogicParadigm........................... 18
1.16 CharactersoftheAlternativeLogicParadigm..................... 18
1.17 TheAlternativeLogicParadigmandPhilosophy ................. 19
1.18 TheReconstructionofLogic....................................... 19
1.19 OrganizationoftheBook........................................... 21
1.20 Notations,Quotations,Transliterations............................ 22
PartI AncientPerspectives
2 TheOriginofLogic ........................................................ 25
2.1 SixClaimsbyGreekPhilosophers................................. 25
2.2 Universe,MindandDivinity....................................... 26
2.3 HumanMindandDivineMind..................................... 26
2.4 MethodandUniverse............................................... 27
2.5 MethodandLogic................................................... 27
2.6 LogicandDiscovery................................................ 28
vii
viii Contents
2.7 Logic,IntuitiveThinkingandDiscursiveThinking............... 29
2.8 AnArticulatedViewoftheOriginofLogic....................... 29
2.9 OriginoftheConnectionBetweenUniverse,GodandMind..... 30
2.10 FromChaostoOrder ............................................... 31
2.11 UniverseandEunomia.............................................. 31
2.12 IntuitiveThinking,DiscursiveThinkingandGreekMythology.. 33
2.13 OriginoftheName‘Logic’ ........................................ 33
2.14 Aristotle’sNamesforLogic........................................ 34
2.15 OriginoftheName‘Method’...................................... 35
3 AncientLogicandScience................................................. 37
3.1 ConceptionsofScience............................................. 37
3.2 Parmenides’ConceptionofScience ............................... 37
3.3 ParmenidesontheRoleofLogicandIntuitioninScience ....... 38
3.4 Plato’sConceptionofScience...................................... 39
3.5 PlatoandKnowledgeasJustifiedTrueBelief..................... 41
3.6 PlatoontheRoleofLogicandIntuitioninScience............... 42
3.7 PlatoontheImpedimentsoftheBody............................. 42
3.8 Plato’sCriticismoftheAxiomaticMethod ....................... 43
3.9 HippocratesofCos’CriticismoftheAxiomaticMethod......... 44
3.10 Aristotle’sConceptionofScience.................................. 45
3.11 Aristotle’sConceptionofDemonstration.......................... 46
3.12 AristotleonRoleofLogicandIntuitioninScience............... 47
3.13 AristotleonProperandCommonPrinciples ...................... 49
3.14 Aristotle’sConceptionofDefinition............................... 49
3.15 Aristotle’sSeparationofKindsandPrinciples.................... 50
3.16 AristotleonTruthasCorrespondence ............................. 51
3.17 AristotleonTruthasIntuitionoftheEssence..................... 52
3.18 AristotleonNousandIntuition .................................... 52
4 TheAnalyticMethod....................................................... 55
4.1 StatementoftheAnalyticMethod ................................. 55
4.2 InferenceandContainment......................................... 55
4.3 ThePlausibilityTestProcedure.................................... 56
4.4 PlausibilityandProbability......................................... 56
4.5 Non-deductiveRules,PlausibilityandExperience................ 57
4.6 DeductiveRules,PlausibilityandExperience..................... 57
4.7 TheDoubleMovementoftheAnalyticMethod................... 58
4.8 TheAnalyticNotionofDemonstration............................ 58
4.9 OriginoftheAnalyticMethod..................................... 59
4.10 BasicFeaturesoftheAnalyticMethod............................ 62
4.11 AnalyticMethodandInfiniteRegress ............................. 63
4.12 Non-finalityofSolutionstoProblems ............................. 64
4.13 OriginalFormulationoftheAnalyticMethod..................... 65
4.14 OriginalFormulationoftheAnalyticMethodandIntuition...... 67
Contents ix
4.15 TheAxiomaticMethod............................................. 68
4.16 TheAxiomaticNotionofDemonstration.......................... 68
4.17 AnalyticMethodvs.AxiomaticMethod........................... 69
4.18 TheMethodofAncientMedicine.................................. 70
4.19 LimitationsoftheOriginalFormulation
oftheAnalyticMethod............................................. 71
4.20 FortuneoftheAnalyticMethod.................................... 72
5 TheAnalytic-SyntheticMethod........................................... 75
5.1 Aristotle’sChangestotheAnalyticMethod....................... 75
5.2 Aristotle’sAnalytic-SyntheticMethod ............................ 76
5.3 Original Formulation of Aristotle’s
Analytic-SyntheticMethod......................................... 76
5.4 AnExampleofAristotle’sAnalytic-SyntheticMethod........... 78
5.5 The Direction of Analysis in Aristotle’s
Analytic-SyntheticMethod......................................... 80
5.6 Aristotle’sAnalytic-SyntheticMethodandIntuition ............. 81
5.7 PlausiblePremisesandEndoxa .................................... 81
5.8 The ControversyBetween Plato and Aristotle
ConcerningMethod................................................. 82
5.9 Pappus’Analytic-SyntheticMethod............................... 83
5.10 OriginalFormulationofPappus’Analytic-SyntheticMethod.... 84
5.11 AnExampleofPappus’Analytic-SyntheticMethod.............. 85
5.12 The Direction of Analysis in Pappus’
Analytic-SyntheticMethod......................................... 87
5.13 FortuneoftheAnalytic-SyntheticMethod ........................ 88
5.14 Analytic-SyntheticMethodandAxiomaticMethod .............. 89
5.15 RelationswithReductiontotheImpossible....................... 90
5.16 TheReasonforUseofReductiontotheImpossible.............. 91
5.17 AnalyticMethodvs.Analytic-SyntheticMethod ................. 93
6 Aristotle’sLogic:TheDeductivistView ................................. 95
6.1 TheDeductivistViewofAristotle’sLogic ........................ 95
6.2 Assertions ........................................................... 97
6.3 LogicalRelationsBetweenAssertions............................. 99
6.4 Syllogisms........................................................... 100
6.5 ConcerningtheName‘Syllogism’................................. 101
6.6 FiguresandMoods.................................................. 102
6.7 SingularandIndeterminateAssertionsinSyllogisms............. 104
6.8 CompleteandIncompleteSyllogisms ............................. 104
6.9 ConversionRulesandStrongReductiontotheImpossible....... 105
6.10 TheCompletionofSyllogisms..................................... 107
6.11 TheReductionofSyllogisms....................................... 108
6.12 Syllogistic........................................................... 110
6.13 LimitationsoftheDeductivistView ............................... 112