ebook img

Restricted Kalman Filtering: Theory, Methods, and Application PDF

65 Pages·2012·0.701 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Restricted Kalman Filtering: Theory, Methods, and Application

SpringerBriefs in Statistics Forfurthervolumes: http://www.springer.com/series/8921 Adrian Pizzinga Restricted Kalman Filtering Theory, Methods, and Application 123 AdrianPizzinga DepartmentofStatistics InstituteofMathematicsandStatistics FluminenseFederalUniversity RiodeJaneiro,Brazil ISSN2191-544X ISSN2191-5458(electronic) ISBN978-1-4614-4737-5 ISBN978-1-4614-4738-2(eBook) DOI10.1007/978-1-4614-4738-2 SpringerNewYorkHeidelbergDordrechtLondon LibraryofCongressControlNumber:2012941620 ©SpringerScience+BusinessMediaNewYork2012 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface In this book, I highlight the developments in Kalman filtering subject to general linear constraints. Essentially, the material to be presented is almost entirely based on the results andexamplesoriginallydevelopedin Pizzingaet al. (2008a), Cerqueiraet al.(2009),Pizzinga(2009,2010),Souzaetal. (2011),Pizzingaetal. (2011), and Pizzinga (2012). There are fundamentally three kinds of topics: (a) new proofs for already established results within the restricted Kalman filtering literature; (b) additional results that are should shed light on theoretical and methodologicalframeworksforlinearstatespacemodelingunderlinearrestrictions; and (c) applications in investment analysis and in macroeconomics, where the proposedmethodsare illustrated andevaluated.At the end,I brieflydiscusssome extensionsinthesubject,which,again,stepintotheory,methods,andapplications. Itisimportanttomentionthatmydoctoralthesis,ofwhichthisbookisamajor revision,wouldnothavebeencompletedwithoutthefinancialsupportfromCNPq and FAPERJ. I would like to thank my friends and colleagues who have been importantinmyprofessionalandpersonallife.I’drathernotlisteachoneofthem here, because they know who they are – and I refuse to run the risk of failing to mentionsomeone. I am especially indebted to certain professorswho have greatly influenced and furthered my education and professional success. Some of them have become good friends over the years. In alphabetical order, I am grateful to Adherbal Filho, Antonio Dias, Ali Messaoudi, Carlos Kubrusly, Claudio Landim, Cristiano Fernandes, Edson Relvas, Eduardo Campos, Fernando Albuquerque, Frederico Cavalcanti, Hedibert Lopes, Inez Costa Chaves, Kaizo Beltrao, Leonardo Rolla, Luiz Carlos da Rocha, Marcelo Medeiros, Nei Carlos Rocha, Sergio Volchan, WaldirLobao,andZeliaBianchini. Very special thanks go to my friends and colleagues from the Institute of MathematicsandStatisticsofFluminenseFederalUniversity.Thesefolksgaveme suchawarmwelcome:::Honestly,whenIamatwork,IfeelasifIamhome. Finally,Iamgratefultomyparents,RoseNanieHeringerdaSilvaandRodolfo DomenicoPizzinga,fortheirsupport.Furthermore,Imustdedicatethisbooktomy v vi Preface mother,towhomIameternallyindebtedforherremarkablehelpandunderstanding throughout my life – and also for her invaluable support on proofreading my scientifictexts,includingthisbook. RiodeJaneiro,Brazil AdrianPizzinga Contents 1 Introduction ................................................................... 1 1.1 Motivation................................................................ 1 1.2 AGlimpseattheLiterature.............................................. 2 1.2.1 StatisticsPapers.................................................. 2 1.2.2 EngineeringPapers .............................................. 3 1.3 TheBook’sContents..................................................... 4 1.4 Organization.............................................................. 5 2 LinearStateSpaceModelsandKalmanFiltering ........................ 7 2.1 TheModel................................................................ 7 2.2 KalmanEquations........................................................ 7 2.3 IntroducingLinearRestrictions ......................................... 8 3 RestrictedKalmanFiltering:TheoreticalIssues.......................... 11 3.1 AugmentedRestrictedKalmanFiltering:AlternativeProofs.......... 11 3.1.1 GeometricalProof ............................................... 11 3.1.2 ComputationalProof ............................................ 13 3.1.3 ConditionalExpectationProof.................................. 15 3.2 StatisticalEfficiency ..................................................... 16 3.3 RestrictedKalmanFilteringVersusRestrictedRecursive LeastSquares............................................................. 18 3.4 Initialization.............................................................. 21 3.4.1 Motivation........................................................ 21 3.4.2 ReviewingtheInitialExactKalmanSmoother................. 21 3.4.3 CombiningExactInitializationwithLinearRestrictions...... 22 4 RestrictedKalmanFiltering:MethodologicalIssues ..................... 27 4.1 Random-WalkStateVectorsUnderTime-InvariantRestrictions...... 27 4.2 ReducedRestrictedKalmanFiltering................................... 28 4.2.1 Motivation........................................................ 28 4.2.2 TheMethod...................................................... 29 4.2.3 ReducingVersusAugmenting................................... 30 4.3 PredictionsfromaRestrictedStateSpaceModel ...................... 32 vii viii Contents 5 Applications ................................................................... 35 5.1 CaseI:SemistrongDynamicStyleAnalysis ........................... 36 5.1.1 Motivation........................................................ 36 5.1.2 CompetingModels .............................................. 37 5.1.3 ModelSelection.................................................. 39 5.1.4 EmpiricalResults................................................ 40 5.2 CaseII:EstimationofDynamicExchange-RatePass-Through....... 44 5.2.1 Motivation........................................................ 44 5.2.2 EmpiricalResults................................................ 46 5.3 CaseIII:GDPBenchmarkingEstimationandPrediction.............. 51 5.3.1 Motivation........................................................ 51 5.3.2 ModelSetup...................................................... 51 5.3.3 EmpiricalResults................................................ 52 6 FurtherExtensions ........................................................... 53 References.......................................................................... 55 List of Figures Fig.5.1 USdollar/realvolatilityundertheAR(1)-GARCH(1,1)model...... 41 Fig.5.2 SmoothedSTARexposuresandJensen’smeasurefor HSBCFIFCambialwithrespective95%confidenceintervals....... 43 Fig.5.3 SmoothedSTAR exposuresandJensen’smeasure forItauMatrixUSHedgeFIFwithrespective95% confidenceintervals .................................................... 43 Fig.5.4 IPAsmoothedbetas..................................................... 46 Fig.5.5 IPAlong-unexchange-ratepass-through ............................. 47 Fig.5.6 IPAconsumption-smoothedbeta ...................................... 48 Fig.5.7 IPAproduction-smoothedbeta......................................... 49 Fig.5.8 IPCsmoothedbetas .................................................... 50 Fig.5.9 IPClong-runpass-through............................................. 50 ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.